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Abstract

In March 2020, Luxembourg became the first country to make public transport free. We

use this unique setting to evaluate the policy’s impact on carbon emissions. Synthetic

difference-in-differences allows us to identify a suitable control group. We use spatial

emissions data to construct a panel of NUTS 2 control regions in the EU from 2016 to

2021. Our estimates indicate an average reduction of around 8% in road transport CO2

emissions. We account for potential confounders, such as the COVID-19 pandemic, shifts

in commuting behaviors and advancements in vehicle technologies. Robustness checks

support the credibility of our results.
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1 Introduction

In March 2020, Luxembourg became the first country in the world to abolish fares on all

modes of public transit, including buses, trains, and trams, throughout the country to

mitigate transport-related externalities (Research Luxembourg, 2021). The provision of

affordable and efficient public transport is often discussed as an effective way of reducing

carbon (CO2) emissions from the transport sector (Federal Transit Administration, 2010;

International Transport Forum, 2020). Accessible, affordable, and efficient public transit

can encourage a shift from private motorized transport to more environmentally friendly

modes. However, despite these benefits, fully free public transport policies are scarce.

We leverage this quasi-experimental setting in Luxembourg to causally identify and

quantify the impact on CO2 emissions in the road transport sector. To evaluate the effect

of this policy, we use the recently introduced synthetic difference-in-differences (SDID)

method to construct a credible counterfactual for Luxembourg and compare the post-

intervention outcomes against it (Arkhangelsky et al., 2021). This allows us to isolate

the policy’s effect from other confounding factors to achieve robust causal inference.

Luxembourg stands out from other European Union (EU) countries in many ways. It

has the highest Gross Domestic Product (GDP) per capita, the highest motorization rate,

and the highest per capita CO2 emissions from transport. These unique characteristics

pose challenges in finding comparable regions for constructing a counterfactual scenario.

To overcome this, we conduct our analysis at the Nomenclature for Territorial Units

for Statistics (NUTS) 2 level, as Luxembourg itself constitutes a NUTS 2 region.1 While

entire countries may not serve as suitable comparison units for Luxembourg, other NUTS

2 regions such as Brussels, Amsterdam, or Paris offer more appropriate benchmarks. This

level of analysis ensures a more meaningful comparison of emission trajectories.

To enhance the robustness of our identification, we employ SDID, which combines ele-

ments of traditional difference-in-differences (DID) and synthetic control (SC) approaches

while overcoming their limitations in our context. The uniqueness of Luxembourg’s case

makes it less plausible that the parallel trends assumption required for DID estimation

will hold. SC methods require a donor pool of units similar in predictors of the outcome

to the treated unit–a requirement that is unlikely to be met in our setting. In contrast,

the SDID method, combines elements of both DID and SC and allows us to construct

a counterfactual CO2 emission trajectory for Luxembourg from a pool of donor regions

without relying on matches in absolute levels at any stage of the procedure–which is

essential to draw causal inferences about the policy’s impact in our specific setting.

Moreover, we address potential confounding factors related to the COVID-19 outburst.

The pandemic likely caused variations in mobility patterns that are unrelated to the free

1NUTS is an EU classification system that divides countries into three levels. These classifications are
used for collecting, developing, and harmonizing European regional statistics, conducting socio-economic
analyses, and framing EU regional policies.
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public transportation policy. However, this only complicates identification insofar as

mobility behavior in Luxembourg changed differently compared to the control regions.

To examine this, we draw on data on working from home and commuting inflow for

Luxembourg. We find that Luxembourg’s mobility patterns in response to the pandemic

were largely consistent with those observed in other EU regions. We account for these

patterns in our models to enhance the accuracy of our identification strategy. To control

for regional variation in pandemic response, we additionally control for daily regional

COVID-19 cases in our estimations.

The potential donor pool for constructing Luxembourg’s counterfactual comprises all

other European regions at the NUTS 2 level over the period 2016-2021. From this pool, we

exclude regions that have implemented any form of public transportation subsidy during

the study period (this is elaborated in Section 4). After ensuring a balanced sample, our

final donor pool includes 137 NUTS 2 regions and 822 region-time observations. Using

this dataset, we estimate that the free public transport policy in Luxembourg led to an

average treatment effect on the treated (ATT) of around -0.083, i.e., to a reduction in

CO2 emissions from the road transport sector by 8.3%.

Our results are significant at the 95% confidence level. We conduct an event study

analysis to verify that parallel trends hold in the pre-treatment period. We conduct

various robustness and sensitivity tests, including a placebo test by backdating the policy

to 2019, iteratively leaving out regions and countries from the donor pool, a specification

that accounts for fuel tourism effects, and analyzing a more restricted sample of NUTS 2

regions. We also examine the sensitivity of our results to different model specifications.

We also carry out an SDID analysis on the CO2 from energy use in the building sector

to detect if our effect is purely driven by the impact of the COVID-19 pandemic. Our

findings remained consistent across all these tests. Reassuringly, our estimates closely

align with survey-based assessments of Luxembourg’s free transit policy. We additionally

extend our estimates to 2022 and find an increasing effect, but are cautious in interpreting

these findings due to data quality issues and confounding factors (further discussed in

Section -7).

We contribute to the literature by providing the first causal assessment of a free public

transport policy on CO2 emissions. Methodologically, we employ novel approaches to

address the unique challenges presented by Luxembourg’s distinct characteristics and

the concurrent COVID-19 pandemic. Additionally, this study offers a framework for

addressing COVID-19 as a potential confounder in similar research contexts. To the best

of our knowledge, there is only one other study that directly looks at Luxembourg’s free

public transportation policy. Bigi et al. (2023) use an agent-based modeling approach and

indicate that the policy significantly contributed to a modal shift from private vehicles to

public transport. Our findings contribute to this narrative by providing a causal ex-post

evaluation of the policy’s impact on CO2 emissions.
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The existing literature on the effects of free public transport on CO2 emissions is

still scarce, largely because such policies were relatively uncommon. Tallinn (Estonia)

introduced free public transit in 2013 and extended it since. Descriptive work by Cats

et al. (2017) found that this policy is associated with an increase in public transport

usage, but had no significant effect on car usage. Bull et al. (2021) randomly assigned

free public transport vouchers to workers in Santiago (Chile), which were primarily used

during off-peak hours. This suggests that the vouchers were more often utilized for leisure

activities rather than reducing car usage.

Our paper links to a larger body of literature that ex-post evaluates transport policies

designed to decrease reliance on motorized vehicles. Policies aimed at mitigating trans-

port emissions can be categorized into three main types. The first one examines policies

intended to directly reduce or restrict the use of motor vehicles by making driving more

costly or less convenient. These include initiatives such as driving restrictions (Davis,

2008, 2017; Gallego et al., 2013), low-emission zones (Sarmiento et al., 2023; Wolff,

2014), road pricing (Gibson & Carnovale, 2015), and tax-based instruments (Andersson,

2019; Pretis, 2022).

The second type of policies promotes a shift to public transport, mainly by subsidizing

public transit systems or improving infrastructure. This body of literature is particularly

relevant to our study, as we also investigate the effects of improved public transport,

specifically through enhanced access. Despite the apparent overlap between free transit

and subsidized transit programs, we maintain that it is useful to distinguish between the

two. While one might consider free transit merely a specific type of subsidy, factors such

as user perceptions, convenience, and behavioral responses can diverge markedly when

no fare is charged. Consequently, a fare-free system might lead to ridership patterns that

differ from those observed in more traditional, partially subsidized scenarios.

Recent research on subsidized transit demonstrates mixed evidence regarding envi-

ronmental outcomes. For instance, Aydin and Kürschner Rauck (2023) and Gohl and

Schrauth (2024) evaluate the impact of Germany’s 9-Euro ticket, introduced in 2022, and

both report a decrease in air pollution, particularly in regions with robust public transit

networks. However, contrasting findings are presented by Liebensteiner et al. (2024),

who observe that while the 9-Euro ticket led to a significant increase in train rides during

leisure hours, it only marginally reduced car usage. Similarly, Albalate et al. (2024) find

no significant effect on air quality from a four-month public transport subsidy in Spain.

Research on public transit infrastructure provides additional insights. Li et al. (2019),

Lalive et al. (2018), and Chen and Whalley (2012) show that expanding subway and rail

services in China, Germany, and Taipei, respectively, improves air quality. Gendron-

Carrier et al. (2022) find no average effect from subway openings across 58 cities, but

reductions in pollution in more polluted cities. Overall, these studies suggest public

transit investments can improve air quality, though outcomes vary by local context.
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Some studies indirectly measure the effects of public transport in the absence of

explicit policy interventions, using transit strikes to assess substitution between public

and private transport. For instance, Anderson (2014), Adler and van Ommeren (2016),

and Bauernschuster et al. (2017) find significant increases in congestion following transit

strikes in Los Angeles, Rotterdam, and Germany’s five largest cities, respectively.

Policies related to the third type aim to improve the energy and fuel efficiency of

vehicles through regulations such as gasoline content standards (Auffhammer & Kellogg,

2011). While most studies focus on individual policies, some jointly examine multiple

interventions (Koch et al., 2022; Kuss & Nicholas, 2022; Winkler et al., 2023).

The rest of the paper is organized as follows. Section 2 briefly introduces Luxem-

bourg’s free public transport policy. The Data used is detailed in Section 3. The iden-

tification strategy is discussed in Section 4. The empirical strategy, including the SDID

procedure, is detailed in Section 5. Section 6 provides our empirical results and Section

7 our robustness tests. The results and potential mechanisms are discussed in Section 8.

Finally, Section 9 provides concluding remarks.

2 Background: Luxembourg and the policy

Luxembourg is a small country in Western Europe and spans an area of about 2,586 km2,

making it one of the smallest countries in the EU. In the NUTS statistical classification,

Luxembourg is treated as a single region at all levels. The country hosts several EU

institutions, with its economy primarily driven by banking and finance. Despite its small

size and population, Luxembourg has the highest GDP per capita among EU countries,

at approximately 140,000 USD. The economic hub is concentrated in Luxembourg City,

the capital, located in the south. The country experiences a significant daily inflow of

commuters from neighboring Belgium, Germany, and France, with around 200,000 people

commuting daily, representing a substantial portion of its population of approximately

660,000. Luxembourg has the highest per capita CO2 emissions from transport among

EU member states, at around 8,200 kg. It also has the highest car density in the EU,

with about 700 cars per 1,000 inhabitants. These characteristics set the country quite

far apart from other EU countries.

On March 1, 2020, Luxembourg became the first country in the world to offer free

public transport nationwide, available to all residents and visitors regardless of age and

income group. Tickets are only required for 1st class travel. This initiative was part of

the broader mobility strategy, “Modu.2.0” that aimed at improving the sustainability of

the mobility system (Ministère du Développement Durable et des Infrastructures, 2018).

Luxembourg designed this policy with the aim of reducing car usage to counter its high

car density and significant congestion problems. Before the implementation of this policy,

annual revenue for ticket sales in Luxembourg amounted to about 41 million euros, which
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accounted for approximately 8% of the annual cost of transport system maintenance

(Ministère du Développement Durable et des Infrastructures, 2018).

The existing public transportation infrastructure forms the backbone of the policy

initiative and comprises buses, trams, and trains. The public transit network is sketched

in Figure 1, where bus lines are shown in grey, train lines are in purple, and the tram line

in red. Buses are the predominant mode of public transportation in Luxembourg and offer

quite a comprehensive coverage across the entire country. They connect different localities

as well as cross-border lines (Ministère du Développement Durable et des Infrastructures,

2020). Altogether about 400 bus lines are running through Luxembourg, connecting the

entire country (Administration des transports publics, 2024). Trains additionally cover

the country in a star-like network, originating in Luxembourg City and connecting it to

cross-border connections (Département de la mobilité et des transports, 2020).

Figure 1: Luxembourg public transport network and traffic camera posts

Note: The map shows Luxembourg’s borders with Belgium (light blue), Germany (green), and France

(dark blue). Black dots indicate traffic posts, with circled ones showing a drop in traffic from 2019 to

2021; red-circled dots mark the top 10 largest declines. Light grey lines represent regional buses, dark

purple lines are national rail, and the red line marks the tram. Luxembourg City is shaded in light pink.

Public transport networks shown as of 2018; data is from Luxembourg’s open data portal.

The city of Luxembourg is additionally served by the only tram line in the country,

which covers around 10 km through 17 stations (Département de la mobilité et des
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transports, 2024). Before the implementation of the free public transportation policy,

Luxembourg charged differentiated public transport fares based on the duration and

length of travel. Special rates for children and the elderly were available, as outlined in

the Ministerial Regulation of July 14, 2017 - Règlement ministériel du 14 juillet 2017

fixant les tarifs des transports publics (Le Ministre du Développement durable et des

Infrastructures, 2017). Short-term tickets, valid for a maximum of 2 hours from validation

were priced at 2 euros. Long-term tickets, valid for 1, 2, and 3 days, ranged from 4 to 12

euros, while annual network subscriptions were priced at 440 euros.2

It is worth noting that the free public transit policy was complemented by enhance-

ments in the transportation infrastructure, notably through the strategic expansion of

the national rail network’s capacity and extensions in the tram line coverage. In 2017,

Luxembourg introduced a tram line traversing Luxembourg City, initially connecting 8

stations. The following year saw the line’s expansion by 3 more stops. December 2020

marked another extension, enlarging the network by 2 kilometers and incorporating 4

additional stations. By September 2022, the tram network further expanded with the

addition of 2 new stations.

The most recent extension lies outside our sample period. Since the 2020 extension

coincides exactly with the introduction of the free transit policy, it is impossible to dis-

entangle their individual effects directly. However, we show in a robustness test that the

2017 expansion did not lead to significant reductions in emissions, suggesting that the

comparatively minor 2020 extension is unlikely to have had a notable effect either. We

will return to the latter aspect in more detail in Section 6.

Currently, the tram stretches over 10 kilometers, serves 17 stations, and includes 6

major interchanges (Département de la mobilité et des transports, 2024). Three more

tramlines are planned to be completed by the end of 2035 (Luxtoday, 2022). Luxembourg

also improved parking availability, particularly near border areas for its cross-border com-

muters. Additionally, through negotiations with neighboring transport networks, fares

for cross-border transport have been lowered (Ministry of Mobility and Public Works,

2020). Consequently, the new scheme is designed to benefit not only residents but also

commuters from neighboring countries. The strategic objective for 2025 is to reduce

congestion during peak hours while transporting 20% more people than in 2017.

Figure 1 also illustrates traffic posts in Luxembourg measuring bi-directional car travel

volume. The traffic volume data is compiled by the Administration des Ponts et Chaussées

(Luxembourg Bridges and Roads Administration) and includes daily traffic counts. We

map the points for which we obtain an uninterrupted time series over the period 2018-

2021. The traffic posts circled all experienced a decrease in annual bi-directional car

traffic volume compared to 2019, and the ten red circles experienced the largest drop.

2A detailed schedule of public transport fares is available at (Le Ministre du Développement durable
et des Infrastructures, 2017).
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The circled traffic posts are largely situated in the vicinity of Luxembourg City and

mostly close to public transport networks. Overall, traffic volume increased annually up

to 2019 and stagnated after 2019, on average.

3 Data

We combine the following data to estimate the causal effect of Luxembourg’s free public

transport policy on CO2 emissions from road transport. Data on the outcome variable, per

capita CO2 emissions from the road transport sector, are constructed by combining spatial

road transport CO2 emissions extracted from the European Emission Database for Global

Atmospheric Research (EDGAR) v8 (Crippa et al., 2022) with population data from

Eurostat’s (2024) regional statistics. We select emissions as our primary outcome variable

not only because they directly relate to a core policy goal, but also because emissions data

are consistently available as a panel dataset across regions. This availability is essential

for conducting a robust causal evaluation in this context. In contrast, data on transit

ridership or vehicle mileage remain scarce and are not always measured uniformly, making

them less suitable for a systematic assessment of policy impacts.

To control for other factors that may influence CO2 emissions from road transport,

we include several covariates. Controls related to the pandemic include daily COVID-19

cases at the NUTS 2 level, sourced from Naqvi (2021), as well as data on working from

home and commuting inflows, obtained from a special extraction from the EU Labor

Force Survey (EU-LFS). Other controls encompass fuel prices, which we source from

the European Commission’s (2024) weekly oil bulletin. Energy intensity is taken from

EEA (2024) and captures changes in efficiency of cars. Data on loaded goods is included

to capture the effect of freight transport emissions and obtained from Eurostat’s (2024)

regional statistics. Finally, we use data on real GDP per capita from the regional statistics

to control for overall differences in economic development.

We drop regions with missing data and regions that experienced methodological breaks

or data-quality disruptions in data generation to ensure a coherent balanced panel.3 After

additionally dropping bad controls (see Section 4), we are left with 19 EU countries

(including Luxembourg) and a total of 138 regions over the sample period 2016-2021,

giving a total of 828 region-year observations. The following subsections discuss in more

detail the outcome variable, CO2 emissions from road transport, and the COVID-19

related controls used in our analysis for this remaining set of countries.

3We drop the United Kingdom, Norway, Romania, Sweden, Switzerland, Liechtenstein, and Lithua-
nia due to missing data. Germany experienced methodological and quality breaks in EU-LFS data
generation.

8



3.1 CO2 emissions data

Road transport emissions are categorized under the Intergovernmental Panel for Climate

Change (IPCC) 1996 sector category 1.A.3.b. Emissions are calculated as the product of

fuel consumption times the associated IPCC emission factors. The EDGAR database pro-

vides annual sector specific grid maps expressed in ton substance with a spatial resolution

of 0.1 degrees × 0.1 degrees. We aggregate these grid cells to the corresponding NUTS 2

regions for the following 19 located in Europe: Austria, Belgium, Croatia, Czech Re-

public, Denmark, Finland, France, Greece, Hungary, Ireland, Italy, Latvia, Luxembourg,

Netherlands, Poland, Portugal, Slovakia, Slovenia, and Spain. The NUTS 2 regional

borders are extracted from the Eurostat database (European Commission, 2022).

We present the evolution of CO2 emissions from road transport for Luxembourg and

other NUTS2 regions over time in Figure 2.4 Panel (a) shows the evolution of the log

of annual CO2 emissions from road transport over the period 2016-2021. Luxembourg

is indicated by the solid black line, while other NTUS 2 regions are shown in gray. The

impact of COVID-19 can be seen in a drop in emissions from 2019 to 2020 across all

regions. In 2021, an increase in emissions can be observed. However, both the drop and

subsequent increase vary across regions.

Luxembourg seems to have experienced a relatively large drop in 2020 relative to

other regions, and emissions in 2021 stay consistently below pre-pandemic levels. Panel

(b) shows the spatial distribution of average road transport emissions over the period

2016-2019, which constitutes our pre-treatment period. High emissions are indicated in

dark blue and lower emissions in light blue. Emissions are concentrated around Lux-

embourg City and border regions with France. Panel (c) shows the percentage change

of average post-treatment (2020-2021) emissions relative to average pre-treatment emis-

sions. Emissions on average stayed below the pre-policy average in the entire country.

The largest difference can be observed around Luxembourg City, while differences on the

Eastern border of Luxembourg are less pronounced. The overall average emission reduc-

tion for the country for the post-treatment period relative to the pre-treatment period is

around -17.5%. To extract the extent to which this reduction can be attributed to the

free-public transport policy is the aim of our paper.

The reduction in CO2 emissions shown in Figure 2 is directly related to a reduction

in fuel consumption, indicating a shift in mobility patterns. This shift may be attributed

to various factors. Our primary interest is the causal effect of the free public transport

policy. To discern this causal effect, we need to account for potential variation caused by

other confounding effects. These potential sources of variation in CO2 emissions include

COVID-19 related restrictions and reduced mobility, as well as an increase in the number

people working from home and fewer commuting trips.

4Grid-cells that intersect with the NUTS 2 boundaries of Luxembourg are allocated according to their
fraction that falls inside these boundaries.
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Figure 2: Evolution of CO2 emissions in Luxembourg over time and space

(a) Evolution of Log-CO2 Emissions for Luxembourg and other NUTS 2 Regions
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Note: Road transport CO2 emissions (tons) are extracted from the EDGARv8.1 at 0.1x0.1 grid cells.
(a) Shows the evolution of Log-CO2 emissions, centered at zero in 2016. Luxembourg is indicated by
the black line. (b) and (c) display spatial distributions of emissions for Luxembourg. (b) shows average
emissions over the pre-treatment period, 2016-2019. (c) shows the %-change from average emissions
over the post-treatment period (2020-2021) compared to the pre-treatment period.

3.2 COVID-19 related variables

With the onset of the COVID-19 pandemic, many countries implemented lockdowns and

travel restrictions to curtail the spread of the virus (Hale et al., 2021). Luxembourg was

no exemption, with its government convening an extraordinary Government Council to

respond to the pandemic on the 12th of March 2020. Subsequently, mobility restrictions
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aimed at containing the spread of the virus came into effect on the 13th of March, 2020

(Government of the Grand Duchy of Luxembourg, 2020).

The Our World in Data (OWID) COVID-19 Government policy stringency index, a

composite index based on 9 response measures, illustrates that many countries, including

Luxembourg, adopted similar measures during this period (Hale et al., 2021). These

restrictions were often enforced at regional or local levels, triggered by the number of

cases reported in specific areas. To capture the effect of the pandemic, we use data on

confirmed COVID-19 cases as a proxy for various policy responses and reduced mobility.

This data is collected and reported by the COVID-19 European Regional Tracker

at the NUTS 3 level (Naqvi, 2021). Information on the number of confirmed cases is

taken from each country’s official institutions responsible for providing COVID-19 related

data. The regional data is then aggregated up to the country level and cross-checked

against data from OWID, which provides confirmed COVID-19 cases at the country level

(Mathieu et al., 2020). The data matches well for 2020 and 2021.

Data quality, however, deteriorates in 2022, because the number of countries regularly

reporting cases decreases strongly in 2022. The COVID-19 European Regional Tracker

reports cases for all regions that we consider in our study, except for Luxembourg. How-

ever, since the regional data is validated against the OWID data and matches well for our

sample period, we resort to COVID-19 cases from OWID for Luxembourg. For our anal-

ysis, we aggregate the NUTS 3 level data in the COVID-19 European Regional Tracker

to the NUTS 2 level.

Figure 3 shows the average regional variation in the number of confirmed daily

COVID-19 cases per 10,000 persons for 2020 and 2021. Dots represent the mean of

confirmed cases at the NUTS 0 level (i.e., country level), the downward-facing triangle

represents the NUTS 2 region with the lowest and the upward-facing triangle the region

with the highest number of confirmed cases per 10,000 persons within a country. The dis-

tance between these two points spans the spatial variation across NUTS 2 regions within

a country. It is evident that this spatial variation is significant, which further motivates

the choice to conduct our study at a regional level compared to the country level.

Overall, the number of cases per 10,000 persons as well as their spatial variation is

smaller in 2020 compared to 2021. Countries with a larger population also tend to show

a bigger variation in cases across their regions. Luxembourg does not show any regional

variation because its NUTS 0 and NUTS 2 regional boundaries are identical. Average

daily cases per 10,000 persons for Luxembourg in 2020 and 2021 are around 600 and

900, respectively. In 2020, this puts Luxembourg at the higher end of the spectrum of

regional cases per 10,000 persons, while it puts it on the lower end in 2021. Compared

to country averages, we find only few comparable units to Luxembourg. At the regional

level, however, we find several regions with more cases in 2020 and fewer ones in 2021,

further motivating our usage of regional data.

11



Figure 3: Regional variation in COVID-19 cases for 2020 and 2021
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Note: The average daily confirmed COVID-19 cases and their spatial distribution across countries for
2020 and 2021. Data for Luxembourg is from Our Wold in Data (OWID), while data for NUTS 2
regions in other countries is taken from the COVID-19 European Regional Tracker (Naqvi, 2021).

We use data on working from home and commuting inflow to further address changes

in mobility behavior as a response to the pandemic. A person is classified as usually

working from home when they were working at home half of the days that they worked in

a reference period of four weeks preceding the end of the reference week in the EU-LFS

survey. We focus on persons usually working at home with their workplace location in

the associated NUTS 2 region and their location of residence within the same country.5

However, this dataset does not capture commuting patterns across regions, which

seems particularly important for Luxembourg, which traditionally experiences a large

commuting inflow. To get a more complete picture of changes in mobility behavior with

respect to work, we consider persons never working from home at a regional level. This

category captures all persons commuting to work irrespective of their location of residence

and thus incorporates commuting inflow from other regions and countries.

Figure 4 shows yearly changes of persons usually working from home for NUTS 2

regions. Figure 4a shows the change from 2019-2020, i.e., the immediate effect of the

pandemic. Blue indicates an increase in working from home, whereas red indicates a

decrease. As expected, almost all regions experienced an increase in people working from

5Ideally, we would want to focus on persons working and living in the same NUTS 2 region. However,
this is not available in the EU-LFS data structure.
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Figure 4: Change (%) in persons usually working from home for NUTS 2 regions

(a) 2019-2020
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(b) 2020-2021
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Note: Data is from a special extraction from the EU-LFS. Persons usually working from home with
workplace at the NUTS 2 region shown in the figure and their location of residence in the associated
country of the region.

home. The figure zooms in on Luxembourg, which also experienced an increase, but notice

that the change is not particularly strong relative to other regions, i.e., Luxembourg is

not an outlier. In Luxembourg, the change of people usually working from home from

2019-2020 almost doubled at around +98%. Figure 4b shows the change from 2020-2021.

The map now shows a more nuanced picture. Some regions experienced a decrease in

working from home, while some experienced another increase. Luxembourg is among the

latter group and experienced a change of around +28%.

Figure 5 shows yearly changes of persons never working at home for NUTS 2 regions.

Figure 5a shows percentage changes from 2020 to 2021. Overall, the map shows a de-

crease in persons never working from home, i.e. a decrease in commuters. This is to be

expected since the pandemic caused an increase in working from home in most regions.

Figure 5b shows percentage changes from 2020-2021 and shows a mixed picture. Some

regions experienced a further decrease in persons never working from home, while others

experienced an increase following the first year of the pandemic. Luxembourg experi-

enced a decrease in 2019-2020 and 2020-2021 of −12% and −10%, respectively. Again,

Luxembourg does not appear to have experienced a particularly strong change relative

to other countries.
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Figure 5: Change (%) of persons never working from home for NUTS 2 regions

(a) 2019-2020
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(b) 2020-2021
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Note: Data is from a special extraction from the EU-LFS. The figure shows yearly changes of persons
never working at home for NUTS 2 regions which are the location of the workplace of these persons
irrespective of their location of residence.

4 Identification strategy

The inability to directly observe the potential outcomes of a specific unit both in the

presence and in the absence of a policy event (treatment) complicates establishing causal

relationships. In the case of Luxembourg, this translates to ‘what would the CO2 emis-

sions from road transport have been if the free public transport policy had not been

introduced?” To overcome this problem, it is necessary to design an appropriate identifi-

cation strategy that constructs a credible comparison group to serve as a counterfactual

for Luxembourg after the policy’s introduction.

Given that Luxembourg differs significantly from other EU countries in observable

characteristics such as CO2 emissions per capita, GDP per capita, and motorization

rates (refer to Section 2), we conduct our analysis at the NUTS 2 level. This approach

is feasible because Luxembourg itself constitutes a NUTS 2 region, and it is likely that

we can find more comparable units to construct the counterfactual for Luxembourg at

the NUTS 2 regional level than at the country level. However, even at a NUTS 2 level,

Luxembourg records the highest per capita CO2 emissions from road transport. We

therefore need an estimation strategy that can handle these complexities in our setting.

The canonical DID estimator calculates the difference in outcomes over time between

treated and control units and relies on the parallel trends assumption. This assumption

implies that, in the absence of treatment, the treated and control groups would have

followed similar trends over time. By assuming parallel trends, the DID estimator controls

for unobserved characteristics that remain constant over time, which might otherwise
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confound the results. Additionally, the DID method assumes that any time-varying

shocks affecting the outcome are common to both treated and control groups, thereby

isolating the treatment effect. However, the parallel trends assumption is often untestable,

and in our specific setting, where Luxembourg already exhibits considerable differences

in observable characteristics, we have reduced confidence that this assumption holds.

Some drawbacks of the DID method can be mitigated by the Synthetic Control (SC)

method, which does not rely on the parallel trends assumption. Instead, the SC method

creates a synthetic control unit as a weighted combination of units from the donor pool,

ensuring that the pre-intervention outcomes of the synthetic unit closely match those of

the treated unit. Importantly, not all units in the donor pool receive equal weights; higher

weights are assigned to regions that are more similar to Luxembourg based on predictors

of CO2 emissions (Abadie, 2021).

The validity of the SC method depends on the trajectory of the outcome variable

of the SC closely following that of the treated unit over a long pre-intervention period.

This close alignment lends confidence that any deviations in outcome trends after the

intervention can be attributed to the policy intervention. However, the substantial dif-

ferences in predictors of CO2 emissions between Luxembourg and other units, coupled

with Luxembourg’s status as the country and even the NUTS 2 region with the highest

per capita emissions, challenge the applicability of this method in our context.

Therefore, we employ the recently proposed estimation procedure, the SDID approach

introduced by Arkhangelsky et al. (2021). SDID combines the strengths of both DID and

SC methods and circumvents the common drawbacks associated with traditional DID and

SC methods. Specifically, it overcomes the challenge of estimating causal relationships

when parallel trends are unlikely to hold in aggregate data for DID and eliminates the

necessity for the treated unit to be within the convex hull of control units for SC. SDID

essentially constructs a synthetic parallel trend for Luxembourg. Section 5 discusses the

SDID estimation procedure in detail.

Identification is further complicated by the COVID-19 pandemic, which coincides with

the policy’s introduction. Since the pandemic was a global shock affecting all regions, its

effects should not technically bias our analysis, as both the treated and control units were

similarly exposed. However, regions adopted varying measures and policies to limit the

spread of the virus, which could have differential impacts on mobility across regions. For

instance, a higher number of COVID-19 cases may lead to shifts toward remote working,

online education, and changes in consumer behavior. These policy responses, potentially

influenced by the number of cases, could correlate with regional mobility restrictions. To

account for these factors, we control for regional average daily COVID-19 cases across

NUTS 2 regions.

Mobility patterns may have also shifted due to the pandemic. This is again only

problematic insofar as regions experienced such shifts differently form one another. These
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changes include individuals who did not work from home prior to the pandemic but

began and continued doing so after the COVID-19 outbreak. Consequently, mobility

within countries (and within regions) and commuting patterns across borders might have

changed. However, as discussed in detail in Section 3.2, Luxembourg did not experience

particularly significant changes relative to other regions. This mitigates the associated

threat to identification. It is nonetheless essential to control for these changes in the

empirical analysis.

Finally, to avoid bad comparisons with already treated units, we excluded NUTS 2

regions that introduced free fares during our sample period. We drop the following regions

before estimating our main results. Estonia (EE) introduced free public transport in

Tallin in 2013 and further extended it in 2017. Given that Estonia is in itself a NUTS 2

region, we drop the whole country. Dunkirk and Calais in France introduced free public

transport for all passengers in 2018 and 2020, respectively. Both are located within the

same NUTS 2 region (FRE1) that we drop. We also drop Cascais in Portugal (PT17),

which introduced free fares in 2020.

Several municipalities in Poland introduced some form of free public transport schemes

during our sample period. Štraub et al. (2023) chart the spatial distribution of these poli-

cies in Poland, which covers over 90 free-fare programs since 2007. Polish municipalities

that introduced free fares for everybody during our sample period cover 12 NUTS 2 re-

gions which we drop (PL21, PL22, PL41, PL51, PL52, PL62, PL63, PL71, PL81, PL84,

PL91, PL92). We also exclude the NUTS 2 regions surrounding Luxembourg to control

for possible spillover effects. These regions include the Province of Luxembourg (BE34)

and the Province of Liege (BE33) in Belgium, Trier (DEB2), and Saarland (DCE0) in

Germany, and Lorraine in France (FRF3).

As a robustness check, we additionally drop regions that introduced free fares for

specific groups (e.g., students, residents, elderly, etc.) or subsidized public transport

during our sample period. These cases can distort the estimated effect if these policies

significantly shifted the modal split in favor of public transport systems. Regions we

drop in our robustness checks include the following. Attica in Greece (EL30), and Nantes

(FRG0), Strasbourg (FRF1), and Paris (FR10) in France. These regions all introduced

some form of free public transport for residents and/or students (“City Public Transport

Information,” 2024). Austria (AT) introduced a nationwide climate ticket for all public

transport modes in 2021. This increased accessibility and significantly reduced prices for

comparable tickets prior to the policy introduction.

The different regions that we drop in our main specification as well as in the robustness

checks are shown in Figure 6. The figure zooms in on NUTS 2 regions in Europe to

highlight potentially bad controls. NUTS 2 regions that introduced free fares for all

passengers during our sample period are shown in darker blue. These are all the regions

we drop in our specification to obtain our main results. Those that introduced free fares
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Figure 6: NUTS 2 regions - bad controls
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Note: NUTS 2 regions that are potential bad control are highlighted. A NUTS 2 ring around
Luxembourg in orange, regions that introduced free fares during our sample period in dark blue and
regions that introduced reduced fares or partially free public transport in light blue.

for specific groups only or introduced reduced fares are shown in lighter blue. These

regions are additionally excluded from our sample in a robustness check. The NUTS 2

ring around Luxembourg is shown in orange and is dropped in all specifications.

5 Synthetic difference-in-differences (SDID)

We use the SDID methodology to estimate the impact of Luxembourg’s free public trans-

port policy on CO2 emissions from road transport. The analysis covers a sample period

from 2016 to 2021. As the policy is implemented in 2020, the analysis includes four years

before the policy is introduced and two years after, which allows for a comparative anal-

ysis of the pre- and post-policy effects. Schenk (2023) shows that the SDID estimator

performs remarkably well in short T panels, is able to handle interactive fixed-effects that

can influence the outcome, and provides conservative standard errors. Considering the

few pre- and post-treatment periods in our sample, this reassures us that the applied

methodology is consistent under our setting.

The SDID estimator aims to consistently estimate an ATT without relying on parallel
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pre-treatment trends between treated and not-treated units. In essence, SDID estimates

the ATT, τ̂ sdid, from a weighted two-way fixed-effects regression. Compared to SDID, DID

approaches use an unweighted two-way fixed-effects regression, thus relying on parrallel

pre-treatment trends in aggregate data. SC relaxes this requirement but uses only unit-

specific weights and does not explicitly weigh time periods optimally. Contrary to SC

method, SDID additionally allows for level differences between treatment and synthetic

control units in estimating optimal weights. Following this rationale, Arkhangelsky et al.

(2021) argue that SDID is more flexible compared to DID and SC methods.
The SDID-ATT is estimated by:

(
τ̂sdid, µ̂, α̂, β̂

)
= argmin

τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2ω̂sdid

i λ̂sdid
t

}
, (1)

where the outcome of interest, Yit, is observed for each unit i at each time t, with

i = 1, ..., N and t = 1, ..., T . Wit, indicates treatment, with Wit = 1 if unit i is treated

at time t and Wit = 0 else. µ is an intercept, αi and βt are unit and time fixed-effects,

respectively. ω̂sdid
i and λ̂sdid

t are unit and time weights, respectively.
Unit weights are computed to align pre-treatments trends between treated and control

units:

(
ω̂0, ω̂

sdid
)
= argmin

ω0∈R,ω∈Ω

Tpre∑
t=1

(
ω0 +

Nco∑
i=1

ωiYit −
1

Ntr

N∑
i=Nco+1

Yit

)2

+ ζ2Tpre||ω||22, (2)

with Ω = {ω ∈ RN
+ , with

∑Nco

i=1 ωi = 1 and ωi = 1/Ntr ∀ i = Nco+1, ..., N}, where ||ω||2
is the Euclidean norm and R+ denotes the positive real line. Nco and Ntr are the number

of untreated and treated units, respectively. Similarly, Tpre is the number of pre-treatment

periods. ζ is a regularization parameter to increase dispersion and ensure unique weights,

it is defined in Arkhangelsky et al. (2021). Contrary to traditional synthetic control unit

weights, these SDID weights do not aim to find comparable regions in absolute terms

conditional on covariates, but the procedure rather assigns weights to align pre-treatment

trends in the (adjusted) outcome.
Time weights are computed to align pre- and post-treatment periods for untreated

units:

(
λ̂0, λ̂

sdid
)
= argmin

λ0∈R,λ∈Λ

Nco∑
i=1

λ0 +

Tpre∑
t=1

λtYit −
1

Tpost

T∑
t=Tpre+1

Yit

2

+ ζ2Nco||λ||2, (3)

with Λ = {λ ∈ RT
+, with

∑Tpre

t=1 λt = 1 and λt = 1/Tpost ∀ t = Tpre + 1, ..., T}, where the
regularization term ensures unique weights and is very small.
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5.1 Handling covariates

We follow the procedure for handling covariates outlined in Arkhangelsky et al. (2021)
and refined in Clarke et al. (2023). Handling covariates in this setting is treated as a
pre-modeling approach, in which the outcome variable is adjusted by covariates before
estimation. The procedure does not put any stationarity requirements on the covariates,
i.e., they can be time-varying. This adjustment procedure contains two steps. In the
first step, we estimate the coefficients of the covariates. To obtain estimates that are
unconfounded by the treatment itself, we follow Kranz (2022) and exclude the treated
unit in the estimation. We run the following model:

Y co
it = αi + γt +Xco

it β + uit, (4)

where the super-script co indicates control units, Y co
it measures CO2 emissions from road

transport, Xco
it collects covariates and may include daily COVID cases, the number of

commuters, and the number of persons usually working from home, fuel prices, freight
transportation, and GDP per capita. To capture differences between regions and time,
we can include region-specific effects, αi, and time-specific effects, γt. In a second step,
we adjust the outcome variable for the aforementioned effects for all units:

Ŷ adj
it = Yit −Xitβ̂. (5)

Finally, the SDID procedure is then applied to the adjusted outcome variable.

5.2 Placebo inference and event-study analysis

Arkhangelsky et al. (2021) show that the estimated ATT, τ̂ sdid, is asymptotically nor-

mal. This means that conventional confidence intervals can be used to conduct asymp-

totically valid inference if the asymptotic variance, V̂τ , can be consistently estimated:

τ ∈ τ̂ sdid ± zα/2

√
V̂τ . Arkhangelsky et al. (2021) propose several estimators for the

asymptotic variance (bootstrap, jackknife, placebo). But in cases where there is only

one treated unit (i.e., Ntr = 1), only placebo estimates are well defined. The idea of

this procedure is to replace the exposed unit with unexposed units, then randomly assign

those units to a placebo treatment and compute a placebo ATT. This is repeated many

times to obtain a vector of placebo ATTs. The variance of this vector can then be used

to obtain an estimate for the asymptotic variance.

To evaluate the robustness of the results, we perform an event-study analysis, which

enables us to study the dynamics of the policy effect and allow us to evaluate the cred-

ibility of pre-treatment parallel trends. We follow the discussion in Clarke et al. (2023)

on how to compute these estimates manually. In principle, we want to estimate the dif-

ferences in the outcome variable between treated and the non-treated synthetic control

region for each time period t. This allows us to evaluate parallel pre-treatment trends by

studying whether these differences changed over time prior to the policy adoption. Ad-

ditionally, we can study the evolution of the treatment over each post-treatment period.
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The difference at each time period t is denoted as dt and given by:

dt = (Ȳ 1
t − Ȳ 0

t )− (Ȳ 1
base − Ȳ 0

base), (6)

where 1 indicates a treated unit and 0 the non-treated synthetic control unit. The first
term in brackets calculates the difference in mean CO2 emissions at time period t for
treated and control units. The second term in brackets captures the difference between
the pre-treatment baseline means of these units. The baseline outcomes are weighted
aggregates over pre-treatment periods rather than arbitrarily chosen time periods (as is
usually done in DID applications). They are given by:

Ȳ 1
base =

Tpre∑
t=1

λ̂sdid
t Ȳ 1

t and Ȳ 0
base =

Tpre∑
t=1

λ̂sdid
t Ȳ 0

t ,

where the time weights, λ̂sdid
t , come from equation (3).

Confidence bands around the estimated dt’s are generated with a placebo-based ap-

proach in the following sequence: (i) Exclude the treated unit (in our case Luxembourg)

from the sample; (ii) Randomly assign treatment to a unit (from the remaining units,

which are all controls units); (iii) Calculate the outcome adjusted for covariates follow-

ing equations (4) and (5); (iv) Compute equation (6) and store the result; (v) Repeat

2-4 many times (e.g., 1,000 times); and (vi) Obtain the 5% quantile from the sample

distribution of the stored results for each time period t.

6 Results

This section reports our main results as well as several robustness checks. We study sev-

eral model specifications, which are outlined in Section 6. Section 7 tests the robustness of

the main results. These checks include in-time placebo tests, specifications that exclude

some of our controls, fuel-tourism effects, as well as results from a restricted sample. We

find that our results are robust against these checks.
We provide results for three different model specifications. The first one does not

adjust emissions for covariates; it is based on equation (1). The second specification
adjusts the outcome variable for COVID-19 related covariates as described in Section 5.1.
The auxiliary regression is given by:

log(CO2/cap)
co
it =αi + γt + β1asinh(cases)

co
it + β2asinh(nvrwfh)

co
it +

β3asinh(wfh)
co
it + uit, (7)

where the outcome variable is the log of road transport CO2 emission per capita. It

is regressed on the inverse hyperbolic sine (asinh) of COVID cases, on people usually

working from home (wfh) with their work-place location in the associated NUTS 2

region, and on people never working from home (nvrwfh) with their work-place location

in the associated NUTS 2 region. We use the inverse hyperbolic sine transformation on
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covariates that include zero-values because the natural logarithm of zero is undefined and

the transformation approaches the natural log. This allows us to interpret the estimated

coefficients as elasticities under certain assumptions.6

The third specification is our main specification and adjusts the outcome variable for
additional covariates and is given by:

log(CO2/cap)
co
it =αi + γt + β1asinh(cases)

co
it + β2asinh(nvrwfh)

co
it +

β3asinh(wfh)
co
it + β4log(gdp)

co
it + β5ei

co
it +

β6diesel
co
it + β7petrol

co
it + β8log(frt)

co
it + uit. (8)

The set of covariates that we consider in this specification additionally includes: the log

of real GDP per capita, (gdp), energy intensity, (ei), measured as average CO2 emissions

of newly registered vehicles, (diesel) and (petrol) prices in real terms (adjusted with the

harmonized index of consumer prices - HICP) to capture cross-unit variations in fuel

prices, and the log of freight transport (frt), measured as tons of goods loaded in the

region, to control for changes in freight transport. Estimation results for the auxiliary

regressions based on Specifications (7) and (8) are shown in Table A.1 in Appendix A.

We provide estimates of the ATTs for the periods that the treatment is in effect, i.e.,

2020-2021, as well as an event-study analysis over the period 2016-2021 in Figure 7 for

the three different specifications. Estimates for the ATTs are shown in Figure 7a and

the event-study estimates are shown in Figure 7b. Estimates are based on the following

model specifications that differentiate in the way they adjust the outcome variable. 1) not

adjusting for covariates - no covariates, 2) adjusting only for COVID-19 related covariates

- adj COVID covariates, and 3) adjusting for the full set of covariates - adj all covariates.

The latter specification produces our main results. The time weights for this variant are

assigned to 2018 and 2019 with weights of 0.3348 and 0.6652, respectively. Figure 7b

shows no statistically significant violation of pre-treatment trends.

The estimated ATTs for the specification including all covariates indicate an effect at

around −0.083, i.e., a 8.3% reduction in transport CO2 emissions as a response to the free-

public transport policy implemented in March 2020. This is less in magnitude compared

to controlling only for COVID-19 related covariates, which yields an estimated ATT of

around −11.8%. The specification with no covariates provides the largest estimated ATT

at almost −15%. All estimates are statistically significant at the 5% significance level.

The event-study analysis shows no violation of parallel pre-treatment trends for all

specifications. This also indicates that the tram extension in 2017 did not significantly al-

ter Luxembourg’s emissions trajectory compared to our synthetic control. Post-treatment

effects show statistical significance in 2020 for all three specifications. In 2021, the confi-

dence intervals based the specifications that adjusts the outcome variable for all covariates

6As suggested by Bellemare and Wichman (2020), we multiply these covariates by a constant to
generate average values greater than 10, which provides stable elasticities.
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slightly cross the dashed zero-line at the 5% significance level.

Figure 7: ATTs and event study estimates

(a) ATTs since treatment in 2020
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Note: ATTs and event study estimates of the impact of free public transport on road emissions (CO2)

per capita in Luxembourg for different model specifications with 95% confidence bands based on placebo

estimates.

The control units that contribute to the synthetic control together with their respec-

tive weights for the third specification are graphically shown in Figure B.1 in Appendix B.

The regions with the largest weights come from Belgium, Denmark, Spain, Finland, Italy,

Netherlands, and Portugal. In addition, Austria, Czechia, Greece, France, Hungary, Ire-

land, and Latvia receive weights. Belgium, Denmark, Finland, and the Netherlands are

among the EU countries with the highest GDP per capita and thus most comparable

to Luxembourg in this respect. While Italy is among EU countries with the highest

motorization rate after Luxembourg. It is therefore quite reasonable that the regions

contributing to the synthetic control are taken from these countries.

Figure B.2 in Appendix B shows how well the SDID estimation aligns pre-treatment

trends for Luxembourg and its synthetic control. Luxembourg is shown as a solid line

and the weighted average across control regions according to the SDID unit weights as

a dashed line. The figure also shows the average pre-treatment trend in the adjusted

outcome variable over all regions and the unweighted average over regions that received

a positive weight. Figure (a) shows the absolute level of trends, while Figure (b) stan-

dardizes the trends so that they are visually more easily comparable.7

The absolutes levels of the adjusted outcome differs markedly between Luxembourg

and the different controls. This reinforces our argument that the SDID procedure is

preferable over standard DID and SC methods. We can see from the standardized trends

in part b of the figure that pre-treatment trends for Luxembourg and the average across

all regions shows the biggest visual difference in trends. The unweighted average across

7Standardization is performed by subtracting the mean and dividing by the standard deviation within
each group.
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regions that received a positive weight is a much better fit. The best fit seems to be

between Luxembourg and the weighted average according to the SDID unit weights.

7 Robustness

The credibility of the SDID estimator depends on its ability to reproduce a counterfactual

outcome for Luxembourg in the absence of the free public transport policy. In this section,

we conduct standard robustness tests commonly used for synthetic controls, an in-time

placebo test, where the policy is backdated to a fictitious date, as well as leave-one-out

placebo tests to assess the sensitivity of the synthetic control to the composition of the

donor pool (Abadie, 2021). Additionally, we examine the robustness of our results to

different model specifications. Finally, we apply the SDID method to CO2 from energy

use in the building sector to assess whether there was an effect attributable to COVID-19.

Finally, we extend our post-treatment period by one year and discuss the results of this

analysis.

In-time placebo: We perform an in-time placebo (also referred to as back-dating

test) as suggested by Abadie (2021). Here, we assign the free public transport policy to

2019, the year before its actual introduction. Since the treatment is artificially assigned to

a prior date we should not observe a significant post-placebo treatment effect. Figure C.1

in Appendix C shows these results. The solid black line represents our main specification

with all covariates, and the dot-dash line represents the specification without covariates.8

The confidence bands at the 5% significance level encompass the zero line, indicating no

significant treatment effect in 2019.

Leave-one-out placebo: We use a donor pool of 137 NUTS 2 regions in our analysis.

To assess the sensitivity of our results, we conduct a leave-one-out robustness check by

iteratively excluding one region at a time, re-estimating the SDID model, and obtaining

a distribution of ATT estimates. The resulting distribution is presented in Figure C.2a in

Appendix C. The estimated ATTs from this exercise range from -0.085 to 0.081, with our

main estimate of -0.083 positioned near the center of the distribution. These estimates

are not statistically different from our main result, indicating that our findings are robust

to the exclusion of individual regions from the donor pool.

Next, we extend this robustness check by iteratively excluding one country at a time.

Since the 137 NUTS 2 regions in the donor pool in our sample span 18 countries, this

approach removes multiple regions at once. The resulting ATT estimates, plotted in

Figure C.2b in Appendix C, range from -0.0962 to -0.0793. The results exhibit greater

sensitivity compared to the leave-one-NUTS 2 region at a time analysis, as dropping

an entire country removes a substantial number of regions simultaneously. Nonetheless,

8We do not estimate the specification adjusted only for COVID-19 covariates since the policy is
back-dated before the pandemic.
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our main estimate of -0.083 remains centrally located within the distribution. The most

pronounced deviations occur when we exclude Italy (-0.0962) and the Netherlands (-

0.0902). Dropping Italy removes 21 NUTS 2 regions, while excluding the Netherlands

removes 12 NUTS 2 regions. Notably, both Italian and Dutch regions receive high weights

in our main specification (see Appendix B.1). The fact that our estimates shift in a

direction that strengthens our main result suggests that, if anything, our primary findings

are conservative.

Restricted sample: We also conduct our analysis on a more restricted donor sample

by excluding regions that introduced any form of public transport subsidy affecting spe-

cific segments of the population, as described in Section 3. We further exlcude Torrevieja

in Spain, Livigno in Italy, Attica in Greece, and Nantes, Strasbourg, and Paris in France,

all of which introduced some form of free public transport for residents and/or students

(“City Public Transport Information,” 2024). We also exclude all Austrian regions due to

the nationwide climate ticket introduced in 2021, which increased accessibility and signif-

icantly reduced prices for comparable tickets. These results are reported in Figure C.3 in

Appendix C. Part (a) of the figure shows the estimated ATTs of our three specifications.

The specification that includes all covariate adjustments estimates the ATT at −0.06,

statistically identical to our main results. Part (b) of the figure shows the corresponding

event-studies. Again, the trajectories and confidence bands are visually indistinguishable

from the ones based on the larger sample.

Alternative specifications: To evaluate the robustness of our main results in Fig-

ure 7, we explored sensitivity across alternative model specifications. Given that our

measures for people working from home and those commuting to work likely capture sim-

ilar dynamics9 to a certain degree, we test the sensitivity of our results by excluding one

or the other from our specifications. Additionally, Table A.1 shows that the coefficient for

log(frt) (log of freight transport) is statistically insignificant. Consequently, we estimate

the following specifications, each excluding different combinations of these covariates: a

model excluding controls for freight transport (Spec 1), a model omitting controls for

working from home (Spec 2), a model excluding both freight transport and working from

home (Spec 3), a model excluding the commuting variable, nvrwfh (Spec 4), and a model

excluding both the commuting variable and freight transport (Spec 5). The results of

these sensitivity analyses are displayed in Figure C.4 and Table C.1 in Appendix C. All

five alternative specifications yield estimates similar to our main specification.

Fuel tourism: Luxembourg’s lower fuel prices compared to neighbouring regions

can attract fuel tourism, which can then lead to increased fuel consumption and higher

emissions. This effect would be unrelated to the free public transport policy and confound

our estimates. We already control for absolute fuel prices in our main specification, which

should capture this effect to some degree. Arguably fuel tourism is more adequately

9They show a moderate correlation of around 0.6.
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accounted for by fuel prices of Luxembourg relative to its neighbours. Figure C.5 in

Appendix C compares both absolute and relative fuel prices between Luxembourg and

its neighbouring regions. Throughout our sample period, Luxembourg’s absolute fuel

prices are consistently lower than those of its neighbours, resulting in relative prices

below one. To test the robustness of our estimates, we re-estimate our main specification

incorporating relative fuel prices, calculated as the fuel price of a NUTS 2 region relative

to the mean of its neighbours that are not part of the same country. The estimated

ATT is −0.0839 and is statistically indistinguishable from our main result (−0.0832).

Similarly, the event-study estimates align closely with our main results. We attribute

this consistency to several factors. First, absolute fuel prices may partly reflect the

effects of relative prices. Second, the relative fuel price in Luxembourg remained below

one throughout the sample period, maintaining an incentive for fuel tourism. Third

(and arguably most importantly), the estimated ATT is based on a comparison between

weighted averages of the pre-and post-treatment periods. As shown in Table C.2 in

Appendix C, there is no significant difference between these weighted averages for diesel

and petrol prices in Luxembourg relative to its neighbors.

Energy for buildings: While the pandemic undeniably led to temporary reductions

in mobility and emissions globally, our SDID approach inherently accounts for this, as

the donor pool is composed of NUTS 2 regions also affected by COVID-19. If COVID-19

were the primary driver of the observed emission reductions, we would expect similar

declines in road emissions in synthetic Luxembourg as well, yet this is not what we

find. Moreover, we conducted a placebo test using CO2 from energy use in buildings,

which should also have been affected by pandemic-related shifts in energy demand (e.g.,

increased residential electricity use due to lockdowns and remote work). If COVID-19

were driving a broad reduction/increase in emissions, we would expect to see an effect in

this sector as well. However, we find a null effect, suggesting that the reduction in road

CO2 is not merely a byproduct of the pandemic. This strengthens the argument that

the free public transport policy itself played a causal role in reducing CO2 rather than

reflecting a general COVID-19 induced effect. The results of this analysis is reported in

Figure C.6 in Appendix C.

Extending the post-treatment period to 2022: We extend the post-treatment

period by one year to 2022, with the results presented in Figure C.7 in Appendix C.

When including this additional year, we observe a further reduction in road transport

CO2 emissions, leading to an increase in the estimated ATT for the post-treatment pe-

riod. This result is expected, as Luxembourg’s free public transport policy is an ongoing

intervention rather than a short-term measure, allowing individuals to gradually adjust

their travel behavior over time. However, we do not adopt this as our main specification

for three reasons. First, the 2022 EDGAR data are still estimates and subject to revision.

Second, COVID-19 case reporting in 2022 was inconsistent, with most regions ceasing to
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report cases after September, making it difficult to control for pandemic-related effects.

Finally, Luxembourg made additional investments in public transport infrastructure in

2022. This makes it more challenging to isolate the effect of the free public transport

policy from the broader improvements in public transit accessibility.

8 Discussion

We now discuss the estimated effect size of Luxembourg’s free public transport policy. We

attribute the estimated ATT of −8.3% to a modal shift from private motorized transport

to public transport and ask whether this estimated effect size is reasonable.

Consider the following back-of-the-envelop calculation. Following figures from the

European Commission and Directorate-General for Mobility and Transport (2021), we

assume a modal split between private vehicles and public transport of 82 and 18%, re-

spectively. We further assume that the observed reduction in CO2 emissions results from

a modal shift from private vehicles to public transport. An 8.3% reduction in CO2 emis-

sions from road transport then implies a corresponding decrease in private vehicle usage

by approximately 6.8%.

This decrease is derived from the fact that private vehicles represent 82% of the modal

split and thus contribute the majority of emissions reductions (calculated as 82% of the

8.3% reduction). To maintain the overall transport capacity, public transport usage must

increase by approximately 38%, calculated by dividing the reduction in private vehicle

usage (6.8%) by the initial share of public transport (18%).

To assess the credibility of this effect size, we utilize data on the average daily number

of people using trams on weekdays from the OECD (2023). In February 2020, this average

tram usage was at around 31,000 persons. This increased to around 36,000 in February

2021 and to around 53,000 in February 2022. This amounts to an increase of around

16% and 47% from 2020-2021 and 2021-2022, respectively. These numbers align with our

estimates, suggesting that our effect size is reasonable.

Additionally, we can relate these results to the LUXmobile survey, conducted by the

Luxembourg City Council (Luxmobile, 2020). This survey reports that the free public

transport policy has led to an average increase in public transport usage of around 34%

and a 38% increase among residents in 2022, further adding credibility to our estimate.

While the descriptive analysis does not direclty validate the causal estimates, the observed

figures are consistent with our estimated effect size, lending further credibility to our

findings.

Further, we calculate the associated marginal abatement cost of carbon for the policy

as the government expenditure per ton of CO2 abated. A simple calculation takes the

foregone revenue from ticket sales of around 41 Mio. Euros and compares it to the tons

of CO2 emissions abated according to our estimates. The latter are calculated as the
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counterfactual post-treatment emissions for Luxembourg: 1
Tpost

∑T
t=Tpre+1CO2

tr
t / (1− τ̂),

where tr indicates the treated unit. With this back-of-the-envelop calculation, we esti-

mate a marginal abatement cost of EUR 114 per ton of carbon. This is, of course, a

crude estimate and does not capture the full costs nor the additional non-CO2-benefits

of the policy. As Hahn et al. (2024) argue, such calculations overlook the benefits to

inframarginal individuals—those who do not alter their behavior in response to the pol-

icy—thereby potentially underestimating the policy’s overall effectiveness. They suggest

a more comprehensive approach, the Marginal Value of Public Funds (MVPF) framework,

which captures these benefits and provides a more accurate assessment of the policy’s

impact. We leave such detailed calculations to future research.

Finally, we attempt to reconcile our findings with other studies, particularly those ex-

amining the German 9-Euro ticket. This short-term policy was implemented in Germany

for three months, from June to August 2022. Its temporary nature may explain why

the 9-Euro ticket did not result in a substantial shift away from car usage (Liebensteiner

et al., 2024). In contrast, Luxembourg’s free public transport policy was introduced as a

long-term measure with no specified end date, potentially allowing for more enduring im-

pacts on travel behavior and emissions, as documented in our study. Further, recent work

by researchers at the Mercator Institute of Global Commons and Climate in Germany

examines the impact of the German 49-Euro ticket, a policy introduced in May 2023

that remains in effect today. Their findings also document a significant shift in traffic

from road to rail (Koch et al., 2024). Together, these results emphasize that long-term

measures are essential for systematically and meaningfully changing individual behavior

and reducing emissions.

9 Conclusion

We estimate the causal impact of Luxembourg’s 2020 free public transport policy on

road transport emissions and find a 8.3% reduction in CO2 emissions. Our analysis re-

mains robust across various models that consider the effects of COVID-19, fuel prices,

and commuting patterns. It is further validated through placebo tests, sample restric-

tions, and fuel tourism analyses. Our findings hold high policy relevance, particularly

for policymakers in urbanized, affluent areas with robust public transport networks like

Luxembourg. Demonstrating the policy’s effectiveness in reducing CO2 emissions, our

study highlights the potential of integrating free public transport into comprehensive

sustainable transport and urban planning initiatives to meet climate targets and foster a

sustainable future.
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Appendix A

Table A.1: TWFE regression for specification projected with all covariates and only
adjusted for COVID-related controls

(1) (2)

Coef. SE Coef. SE

asinh(cases) −0.0300∗∗∗ (0.0032) −0.0181∗∗∗ (0.0060)

asinh(nvrwfh) 0.0412 (0.0303) 0.1881∗∗∗ (0.0553)

asinh(wfh) −0.0446∗∗∗ (0.0071) −0.0443∗∗∗ (0.0106)

log(gdp) 0.2649∗∗∗ (0.0776)

ei 0.0036∗∗∗ (0.0004)

diesel −0.6570∗∗∗ (0.0747)

petrol 0.0631 (0.1274)

log(frt) 0.0001 (0.0081)

Obs 822 822

N 137 137

Note: Dependent variable is log of CO2 per captia, log(co2), standard errors are in parantheses and clustered at the regional

level. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10
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Appendix B
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Figure B.2: Pre-treatment trends of the adjusted log CO2 per capita emissions
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Note: Luxembourg is the pre-treatment time series trend for Luxembourg (treated unit). Simple avg all

units is the pre-treatment average trend of all units in the donor pool. Simple avg positively weighted

units is the pre-treatment average trend of the units in the donor pool that received positive weights.

Weighted average is the pre-treatment weighted average of the units that received positive weights.
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Appendix C

Figure C.1: In-time placebo test
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Note: Results are re-estimated by back dating the policy to 2019, prior to the actual policy implemen-

tation.

Figure C.2: Distribution of ATT: leave one out analysis
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Note: Panel (a) presents the distribution of ATT estimates obtained by iteratively excluding one region

at a time and re-estimating the SDID model. Panel (b) displays the distribution of ATT estimates

obtained by iteratively excluding one country at a time and re-estimating the SDID model.
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Figure C.3: ATTs and event study estimates restricted sample

(a) ATTs since treatment in 2020
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Note: ATTs and event study estimates of the estimated impact of free public transport on road emissions

CO2 per capita in Luxembourg using the restricted sample for different model specifications with 95%

confidence bands based on placebo estimates.

Figure C.4: ATTs across different model specifications
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Note: Spec 1 excludes controls for freight transport; Spec 2 excludes controls for working from home;

Spec 3 excludes controls for both freight and working from home, Spec 4 excludes controls for commuting

(never working from home); Spec 5 excludes controls for both freight and commuting.
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Table C.1: Sensitivity analysis across different model specifications

(1) (2) (3) (4) (5)

lco2cap lco2cap lco2cap lco2cap lco2cap

acases -0.0300∗∗∗ -0.0296∗∗∗ -0.0294∗∗∗ -0.0306∗∗∗ -0.0306∗∗∗

(0.00315) (0.00305) (0.00303) (0.00327) (0.00320)

lgdp 0.265∗∗∗ 0.268∗∗ 0.270∗∗ 0.259∗∗∗ 0.259∗∗∗

(0.0774) (0.0946) (0.0942) (0.0770) (0.0768)

anever all 0.0412 0.125∗∗∗ 0.125∗∗∗

(0.0301) (0.0354) (0.0353)

ausual -0.0446∗∗∗ -0.0479∗∗∗ -0.0479∗∗∗

(0.00715) (0.00662) (0.00662)

ei 0.00359∗∗∗ 0.00304∗∗∗ 0.00304∗∗∗ 0.00366∗∗∗ 0.00366∗∗∗

(0.000383) (0.000390) (0.000389) (0.000380) (0.000380)

diesel real -0.657∗∗∗ -0.650∗∗∗ -0.653∗∗∗ -0.670∗∗∗ -0.671∗∗∗

(0.0738) (0.0765) (0.0759) (0.0736) (0.0726)

super real 0.0631 -0.0115 -0.0101 0.0635 0.0639

(0.127) (0.129) (0.129) (0.127) (0.126)

lload 0.00314 0.000612

(0.00741) (0.00780)

Observations 822 822 822 822 822

Note: Size Standard errors in parentheses. Dependent variable is log(co2cap).

* p < 0.1, ** p < 0.05, *** p < 0.01

Table C.2: Pre- and post-treatment averages of relative fuel prices for Luxembourg

Diesel Petrol

Pre-Avg Post-Avg Pre-Avg Post-Avg

BE 0.7825 0.8028 0.8869 0.8814

DE 0.8684 0.8759 0.8493 0.8368

FR 0.7585 0.8056 0.8001 0.8182

Note: Relative fuel prices of LU with respect to its neighboring countries. Pre-Avg are relative fuel

prices based on time-weighted pre-treatment fuel prices, where time weights are taken from the SDiD

main specification. Post-Avg are relative fuel prices based on post-treatment fuel prices.
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Figure C.5: Absolute and relative fuel prices for LU and neighbouring countries
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Note: Bars show fuel prices in Eurocents per 1,000 litres adjusted for inflation (HICP). Lines indicate

fuel prices of Luxembourg relative to its neighbouring countries over time.

Figure C.6: Energy use in the building sector

(a) ATT since treatment in 2020
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Note: ATTs and event study estimate of the estimated impact of COVID-19 on CO2 emissions from the

Energy use in the building sector. The specification with all covariates includes controls for the log of

GDP per capita, commuting, working from home, COVID-19 cases, and additionally employment rate.
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Figure C.7: Extending the post-treatment period to 2022
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Note: The sample used for the extended post-treatment period has 129 regions (instead of 137). We lose

8 regions, 6 from Greece (EL42, EL43, EL51, EL63, and EL64), and 2 Italian regions (ITC4, and ITF2)

due to missing data in covariates).
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