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Abstract

In March 2020, Luxembourg became the first country in the world to offer free public

transport across all modes of transport. We leverage this unique quasi-experimental set-

ting to evaluate whether Luxembourg’s free public transport policy has induced a shift

from private motorized transport to free public transport. To assess this shift, we mea-

sure the reduction in carbon emissions from road transport as an indicator of reduced

dependence on private motorized vehicles. We use spatial panel data from the European

Emission Database on Global Atmospheric Research (EDGAR) and utilize the recently

proposed Synthetic Difference-in-Differences method that combines the advantages of

the canonical Difference-in-Difference and Synthetic Control approaches. The study es-

timates a 6.9% reduction in road transport emissions as a result of the policy, indicating

a significant modal shift from private vehicles to public transport. We carefully consider

Luxembourg’s distinctive characteristics and account for the concurrent COVID-19 pan-

demic to address potential challenges associated with identification. In particular, we

control for confounding factors such as COVID-related restrictions and fuel prices as well

as changes in commuting and working-from-home. Event study analyses and sensitivity

checks indicate the overall robustness of our results.

Keywords: Transportation, Emissions, Public Transport, Synthetic DiD
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1 Introduction

The transport sector is a significant source of greenhouse gas (GHG) emissions. In 2019, it

is estimated to be responsible for almost 15% of global net anthropogenic GHG emissions

(IPCC, 2022). About a quarter of the European Unions (EU) GHG emissions in 2019

came from the transport sector, of which road transport accounted for about 72% (EEA,

2022). Moreover, GHG emissions from the EU transport sector increased by about 33.5%

from 1990 to 2019 (EEA, 2022). This stands in contrast to all other sectors, which

experienced a decrease in emissions over the same period (Crippa, Guizzardi, Banja,

et al., 2022). Therefore, reducing emissions from the transport sector is imperative to

mitigate the negative impacts of climate change and limit further warming of the planet.

Additionally, reducing transport sector emissions is critical for the EU to achieve its goal

of climate neutrality by 2050 (EEA, 2022).

The provision of affordable and efficient public transport is often discussed as an effec-

tive way of reducing carbon (CO2) emissions from the transport sector (Federal Transit

Administration, 2010; International Transport Forum, 2020). Accessible, affordable, and

efficient public transport can encourage a shift from private motorized transport to the

more environmentally friendly public transport. Such shifts can help reduce emissions

from the transport sector. In March 2020, Luxembourg became the first country in the

world to offer free public transport on all modes of transport (buses, trains, and trams)

throughout the country (Research Luxembourg, 2021). This policy initiative created a

unique quasi-experiment to examine the effectiveness of free public transport in curtailing

emissions in the transport sector. Our paper exploits this quasi-experimental setting cre-

ated by this policy intervention to quantify its effect on CO2 emissions in Luxembourg’s

road transport sector.

Our paper links to a large body of literature that ex-post evaluates transport policies

designed to decrease reliance on motorized vehicles. Policies aimed at mitigating trans-

port emissions can be categorized into three main strategies. The first category examines

policies intended to directly reduce or restrict the use of motor vehicles by making driv-

ing more costly or less convenient. These include initiatives such as low-emission zones

(Sarmiento et al., 2023; Wolff, 2014), driving restrictions (Davis, 2008, 2017; Gallego et

al., 2013), and tax-based instruments (Andersson, 2019; Pretis, 2022). The second cate-

gory includes policies encouraging a shift towards more sustainable modes of transport,
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in particular by subsidizing public transport systems (Aydin & Kürschner Rauck, 2023;

Borsati et al., 2023; Gohl & Schrauth, 2024) or improving public transit infrastructure

(Chen & Whalley, 2012; Gendron-Carrier et al., 2022; Lalive et al., 2018; Li et al., 2019).

Policies in the third category aim to improve the energy and fuel efficiency of vehicles

through regulations such as gasoline content standards (Auffhammer & Kellogg, 2011).

While most studies focus on individual policies, some jointly examine multiple interven-

tions (Eibinger et al., 2024; Koch et al., 2022; Kuss & Nicholas, 2022; Winkler et al.,

2023).

Literature on public transport provision and improvements is particularly relevant

for the context of this contribution. Research examining the impact of enhancing public

transportation generally reports a decrease in air pollution. Li et al. (2019) assess the

effect of subway expansion on air quality in China, while Lalive et al. (2018) investigate

the impact of increased regional rail service in Germany. Additionally, Chen and Whalley

(2012) explore the consequences of introducing a new rail transit system in Taipei. All

these studies conclude that such policies lead to an improvement in air quality, effectively

reducing air pollution. Gendron-Carrier et al. (2022) examine the effect of opening subway

systems on air pollution in 58 cities, and despite observing no average effect, they identify

a decrease in air pollution specifically in cities that initially had higher levels of pollution.

Studies investigating the effects of fare decreases generally report a decrease in air

pollution. For instance, research by Aydin and Kürschner Rauck (2023) and Gohl and

Schrauth (2024) examine the impact of the 9-Euro ticket introduced in Germany in 2022

on air quality. Both studies observed a decline in air pollution following the introduction

of the 9-euro ticket, with more significant reductions noted in regions well-served by public

transit systems. In contrast, Borsati et al. (2023) investigate the effects of a four-month

public transport subsidy implemented in Spain in 2022 but finds no significant evidence

of improved air quality.

However, literature on the effects of free public transport is still scarce. We know of

only a few studies on the effects of free public transport within cities. Tallin (Estonia)

introduced free public transit in 2013. Descriptive work by Cats et al. (2017) found that

this policy lead to an increase in public transport usage, but had no significant effect

on car usage. Bull et al. (2021) randomly assigned free public transport vouchers to

workers in Santiago (Chile). These were mainly used during off-peak hours, suggesting
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an increase in the use of public transport for leisure activities rather than a reduction in

car use. Tomeš et al. (2022) study two massive long-distance fare discount schemes for

children, students, and pensioners in Slovakia and Czechia. The former introduced free

railway fares for these groups from 2014 on, while the latter introduced a 75% discount

for trains and busses from 2018 on. They found a significant increase in public transport

usage for these groups, but do not discuss changes in car usage.

Our study contributes to the existing literature by analyzing the causal impact of

Luxembourg’s free public transport policy, launched in March 2020, on the country’s

road transport CO2 emissions. Luxembourg’s position as the first country in the world

to implement this policy provides a unique experimental context. The existence of a large

number of countries and regions without free public transport provides an opportunity

to construct a counterfactual scenario. This scenario would represent a suitable compar-

ison for the trajectory of Luxembourg’s road transport CO2 emissions if the policy had

not been implemented. This allows us to evaluate the causal impact of this policy on

road transport CO2 emissions. To the best of our knowledge, our study is the first to

empirically assess the direct causal effect of free public transportation on CO2 emissions.

The results of our study thus provide a unique and significant contribution to the body

of evidence regarding the efficacy of public transportation as a strategy to tackle climate

change.

We use the recently proposed SDID method and construct a counterfactual CO2

emission trajectory for Luxembourg from a pool of donor regions consisting of all other

European countries at the Nomenclature for Territorial Units for Statistics (NUTS) 2

regional level. We conduct our analysis at the NUTS 2 level, as Luxembourg itself

constitutes a NUTS 2 region. Moreover, Luxembourg is quite different to other European

countries in economic terms and NUTS 2 regions can offer a more suitable comparison

to Luxembourg in terms of their emission trajectories compared to entire countries. We

further include covariates to control for the potential confounding effects arising from the

COVID-19 pandemic, the resulting changes in commuting, working-from-home patterns,

and changes in fuel prices that could also affect road transport CO2 emissions.

We estimate that the free public transport policy in Luxembourg led to an estimated

average treatment effect (ATT) of around 6.9% reduction in CO2 emissions from the

road transport sector. To the best of our knowledge, there is only one other study that
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directly looks at Luxembourg free public transportation policy. Bigi et al. (2023) use

an agent-based modelling approach to show that the policy significantly contributed to

a modal shift from private vehicles to public transport, but that it did not significantly

impact congestion levels. Our results are in line with their findings and appear robust

across different specifications.

The rest of the paper is organized as follows. Section 2 briefly introduces Luxem-

bourg’s free public transit policy. Data and the identification strategy are discussed in

Section 3. The empirical strategy, including the SDID procedure, is detailed in Section 4.

Section 5 provides our empirical results and robustness tests. The results and potential

mechanisms are discussed in Section 6. Finally, Section 7 provides concluding remarks.

2 The policy

On March 1, 2020, Luxembourg became the first country in the world to offer free public

transport nationwide, available to all residents and visitors.1 This initiative was part

of the broader mobility strategy, ”Modu.2.0” aimed at improving the sustainability of

the mobility system (Ministère du Développement Durable et des Infrastructures, 2018).

With the highest car density in Europe and facing significant congestion problems, Lux-

embourg designed this policy not only to alleviate traffic but also to support social equity

by making travel more accessible for low-income earners. The initiative thus underscores

a commitment to sustainable mobility and inclusivity. Before the implementation of this

policy annual revenue for ticket sales in Luxembourg amounted to about 41 million eu-

ros, which was approximately 8% of the annual cost of maintaining the transport system.

Financing for the free public transit policy now comes from taxpayers.

The existing public transportation infrastructure comprises buses, trams, and trains.

It forms the backbone of this initiative and provides wide accessibility and efficient ser-

vice across the country. Buses are the predominant mode of public transportation in

Luxembourg, offering comprehensive coverage across the entire country. These connect

different localities as well as cross-border lines (Ministère du Développement Durable et

des Infrastructures, 2020). Altogether about 400 bus lines are running through Lux-

embourg, connecting the entire country (Administration des transports publics, 2024).

1Tickets are only required for 1st class travel
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The city of Luxembourg is additionally served by the only tram line in the country, cov-

ering around 10km through 17 stations (Département de la mobilité et des transports,

2024). Trains additionally cover the country in a star-like network, with its center in

Luxembourg city (Département de la mobilité et des transports, 2020). Figure F.1 maps

Luxembourg’s regional bus network (RGTR network) (grey), tram line (red), and the Na-

tional Rail network (CFL) (pink). The geospatial data of the public transport networks

are also obtained from Luxembourg’s open data portal (Gouvernement du Grand-Duché

de Luxembourg, 2024).2

It is worth noting that the free public transit policy was complemented by enhance-

ments in the transportation infrastructure, notably through the strategic expansion of the

national rail network’s capacity. In 2017, Luxembourg introduced a tram line traversing

Luxembourg City, initially connecting 8 stations. The following year saw the line’s expan-

sion, adding 3 more stops. December 2020 marked another significant extension, enlarging

the network by 2 kilometers and incorporating 4 additional stations. By September 2022,

the tram network further expanded with the addition of 2 new stations. The latter two

expansions took place after the free public transportation policy was introduced. Cur-

rently, the tram stretches over 10 kilometers, serving 17 stations, and includes 6 major

interchanges (Département de la mobilité et des transports, 2024). Luxembourg plans to

further introduce 3 more tramlines by the end of 2035 (Luxtoday, 2022).

With a substantial number of cross-border commuters, Luxembourg has focused on

improving parking availability, particularly near border areas. Additionally, through

negotiations with neighboring transport networks, fares for cross-border transport have

been lowered (Ministry of Mobility and Public Works, 2020). As a result, the new scheme

is designed to benefit not only residents but also those commuting from neighboring

countries. The strategic objective for 2025 is to reduce congestion during peak hours

while transporting 20% more people than in 2017.

3 Data and identification

Causal policy evaluation studies face a fundamental problem arising from the inability

to directly observe potential outcomes of a specific unit both in the presence and in the

2The latest shapefiles available are for 2018
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absence of a policy event (treatment). This makes it difficult to establish causal relation-

ships, as it is not possible to observe the treated unit in its untreated state following a

policy intervention. In the case of Luxembourg, this translates to “what would the CO2

emissions from the road transport sector have been if the free public transport policy was

not introduced?” To overcome this problem, it is necessary to identify an appropriate

identification strategy that allows the construction of a credible comparison group that

can be used as a counterfactual for Luxembourg after the introduction of the policy.

In our specific setting, we face two main challenges when selecting an appropriate

identification strategy. First, Luxembourg differs from other European countries in many

ways. It is a small country, measuring around 2,586 km2. In the NUTS statistical

region, it is a single region at all levels. Its population is also relatively small at around

660,000. Conversely, GDP per capita at around 140,000 USD is also highest among all

EU countries. Moreover, CO2 emissions from transport per capita are highest among all

EU member states at around 8,200 kg. Luxembourg has the highest car density within

the EU at around 700 cars per 1,000 inhabitants. To identify the effect of free public

transport, we want to compare the evolution of transport emissions with comparable

regions in terms of their emission trajectories. The uniqueness of Luxembourg therefore

makes it difficult to find a suitable counterfactual. It would be difficult to meet the parallel

trend assumption necessary to conduct a difference-in-difference (DID) estimation, as it is

extremely difficult to find a comparable unit based on both observable and unobservable

characteristics. This could be compensated for by synthetic control (SC) approaches,

which reweight units to adjust for pre-treatment trends (Abadie, 2021). However, this

approach also faces difficulties due to the lack of directly comparable regions (not only

in their trajectories but in absolute levels) to include in the donor pool to create the

synthetic counterfactual, for the reasons discussed above.

To overcome the first challenge, we employ a recently proposed estimation proce-

dure, the SDID approach introduced by Arkhangelsky et al. (2021). SDID combines

the strengths of both Difference-in-Differences (DID) and Synthetic control (SC) meth-

ods. SDID circumvents the common drawbacks associated with traditional DID and SC

methods. Specifically, it overcomes the challenge of estimating causal relationships when

parallel trends are not observed in aggregate data for DID and eliminates the necessity

for the treated unit to be within the ”convex hull” of control units for SC. Furthermore,
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given the size of Luxembourg, we carry out the SDID analysis at the NUTS 2 regional

level to find more comparable control regions. This will be discussed in more detail in

Section 4.

Identification is further threatened by variations in mobility patterns unrelated to

the free-public-transport policy. Potential confounding includes variation related to the

COVID-19 pandemic, including policy responses to the pandemic, changes in working

from home, and changes in commuting. We account for these potential confounders

by including covariates to control for these confounding effects in the SDID estimation,

which is discussed in more detail in Section 3.1, 3.2 and 3.3. In these sections, we further

discuss in detail and provide descriptive statistics of the evolution of transport-related

CO2 emissions as well as potential confounders. A detailed description of all variables

that we use for analyses is given in Table A.1 in Appendix A.

Finally, to avoid bad comparisons with already treated units, we exclude regions from

our sample that implemented policies that substantially reduced costs and/or increased

accessibility of public transport usage in our sample period. We drop Austria and Estonia

from our sample. Estonia introduced free public transport in Tallin in 2013 and extended

it since. Given that Estonia is in itself a NUTS 2 region, therefore we drop the whole

country. Austria introduced a nationwide climate ticket for all public transport modes in

2021. This increased accessibility and significantly reduced prices for comparable tickets

prior to the policy introduction.

We also exclude other regions that introduced free or subsidized public transport

during the sample period. These regions include Cascais in Portugal, Torrevieja in Spain,

Livingo in Italy, Attica in Greece, and Calais, Dunkirk, Nantes, Strasbourg, and Paris

in France. These regions all introduced some form of free public transport for residents

and/or students (Fare free public transport, 2024). We also exclude the NUTS 2 regions

surrounding Luxembourg to control for possible spillover effects. These regions include

the Province of Luxembourg, and the Province of Liege in Belgium, Trier, and Saarland

in Germany, and Lorraine in France.

3.1 Road transport CO2 emissions

Road transport CO2 emissions are extracted from the European Emission Database for

Global Atmospheric Research (EDGAR) v8 (Crippa, Guizzardi, Solazzo, et al., 2022).
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Road transport emissions are categorized as IPCC-1996 sector category 1.A.3.b. Emis-

sions are calculated as the product of fuel consumption times the associated IPCC emis-

sion factors. The EDGAR database provides annual sector-specific grid maps expressed

in ton substance with a spatial resolution of 0.1 degrees × 0.1 degrees. We aggregate these

grid cells to the corresponding NUTS 2 regions for the following 32 countries located in Eu-

rope: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,

Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechten-

stein, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania,

Slovakia, Slovenia, Spain, Sweden, Switzerland, and United Kingdom. The NUTS 2 re-

gional borders are extracted from the Eurostat database (European Commission, 2022).

We present the spatial road transport CO2 emissions for Luxembourg from 2016-2021

in Figure 1.3 High emissions are indicated in red and lower emissions in yellow. Emissions

are concentrated around Luxembourg city and border regions with France. The impact

of COVID-19 can be seen in a drop in emissions from 2019 to 2020. Emissions in 2021

and 2022 stay consistently below pre-pandemic values. The reduction in CO2 emissions is

directly related to a reduction in fuel consumption, i.e., a shift in mobility patterns. This

shift may be attributed to various factors. We are interested in the effect of free public

transport, which is one potential source. Another likely source for the variation in CO2

emissions is an increase in the number people working from home and fewer commuting

trips.

3.2 COVID-19 cases

The COVID-19 pandemic is a potential source of variation in mobility patterns unrelated

to the free-public-transport policy in Luxembourg. A higher number of COVID-19 cases

may, for example, lead to a shift in remote working, online education, and consumer

behavior. Additionally, policy responses to the pandemic are potentially influenced by the

number of cases and regional mobility restrictions may thus correlated with the number

of cases. To accommodate such factors, we explore regional data on daily COVID-19

cases across countries.

Data on confirmed COVID-19 cases are collected and reported by Naqvi (2021) up

3Grid-cells that intersect with the NUTS2 boundaries of Luxembourg are allocated according to their
fraction that falls inside these boundaries.
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Figure 1: CO2 emissions from road transport for Luxembourg, 2016-2021

0 − 50000

50000 − 1e+05

1e+05 − 150000

150000 − 2e+05

2e+05 − 250000

250000 − 3e+05

3e+05 − 350000

350000 − 4e+05

4e+05 − 450000

450000 − 5e+05

LU 2021

0 − 50000

50000 − 1e+05

1e+05 − 150000

150000 − 2e+05

2e+05 − 250000

250000 − 3e+05

3e+05 − 350000

350000 − 4e+05

4e+05 − 450000

450000 − 5e+05

LU 2020

0 − 50000

50000 − 1e+05

1e+05 − 150000

150000 − 2e+05

2e+05 − 250000

250000 − 3e+05

3e+05 − 350000

350000 − 4e+05

4e+05 − 450000

450000 − 5e+05

LU 2019

0 − 50000

50000 − 1e+05

1e+05 − 150000

150000 − 2e+05

2e+05 − 250000

250000 − 3e+05

3e+05 − 350000

350000 − 4e+05

4e+05 − 450000

450000 − 5e+05

LU 2018

0 − 50000

50000 − 1e+05

1e+05 − 150000

150000 − 2e+05

2e+05 − 250000

250000 − 3e+05

3e+05 − 350000

350000 − 4e+05

4e+05 − 450000

450000 − 5e+05

LU 2017

0 − 50000

50000 − 1e+05

1e+05 − 150000

150000 − 2e+05

2e+05 − 250000

250000 − 3e+05

3e+05 − 350000

350000 − 4e+05

4e+05 − 450000

450000 − 5e+05

LU 2016

Note: Road transport CO2 emissions are extracted from the European Emission Database for Global
Atmospheric Research (EDGAR) v8. Grid cells are 0.1x0.1 degrees. Emissions are expressed in ton
substance.

to the NUTS 3 level. Information on the number of confirmed cases is taken at a NUTS

3 level from each country’s official institutions responsible for providing COVID-related

data. The regional data is then aggregated up to the country level and cross-checked

against data from Our Wold in Data (OWID), which provides confirmed COVID-19 cases

at the country level (Mathieu et al., 2020). The data matches well for 2020 and 2021.

Data quality, however, deteriorates in 2022, because the number of countries regularly

reporting cases decreases strongly in 2022. Naqvi (2021) reports cases for all regions that

we consider in our study, except for Luxembourg. However, since the regional data is

validated against the OWID data and matches well for our sample-period, we resort to

COVID-19 cases from OWID for Luxembourg. For our analysis we aggregate the NUTS

3 level data to the NUTS 2 level.

Figure 2 shows the regional variation in the number of confirmed daily COVID-19

cases per 10,000 population for 2020 and 2021. Dots represent the mean of confirmed

cases at the NUTS 0 level (i.e., country level), the downward-facing triangle represents

the NUTS 2 region with the lowest and the upward-facing triangle the region with the

highest number of confirmed cases per 10,000 persons within a country. The distance

between these two points spans the spatial variation across NUTS 2 regions within a

country. It is evident that this spatial variation is significant, which further motivates
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Figure 2: Regional variation in COVID-19 cases for 2020 and 2021
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Note: Confirmed COVID-19 cases and their spatial distribution across countries for 2020 and 2021.
Data for Luxembourg is from Our Wold in Data (OWID), while data for NUTS2 regions in other
countries is taken from Naqvi (2021).

the choice to conduct our study at a regional level compared to the country level.

Overall, the number of cases per 10,000 persons as well as their spatial variation is

smaller in 2020 compared to 2021. Countries with a larger population also tend to show

a bigger variation in cases across their regions. Luxembourg does not show any regional

variation because its NUTS 0 and NUTS 2 regional boundaries are identical. Daily cases

per 10,000 persons for Luxembourg in 2020 and 2021 are around 600 and 900, respectively.

In 2020, this puts Luxembourg at the higher end of the spectrum of regional cases per

10,000 persons, while it puts it on the lower end in 2021.

3.3 Working from home and commuting

A main threat to identification are people who changed their mobility pattern with re-

spect to work. This includes persons that did not work at home prior to the pandemic,

but started and continued working from home since the COVID-19 outbreak. As a

consequence, mobility patterns within a country as well as commuting patterns across

countries might have changed. This is problematic for identification when such changes
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are very different in Luxembourg compared to other regions. Luxembourg experiences

a large inflow of commuters relative to their workforce. Around 200,000 persons com-

mute to Luxembourg across the border, which relates to around 44% of its labor force

in 2020 (Luxembourg.lu, 2024). Cross-border commuters work in Luxembourg but their

residence is located in France, Belgium, or Germany. To study changes in this behavior,

we draw on data on working from home and commuting inflow.

Data on working from home is obtained from a special extraction from the EU La-

bor Force Survey (EU-LFS) for the period 2016-2021. A person is classified as usually

working from when they were working at home half of the days that they worked in a

reference period of four weeks preceding the end of the reference week in the survey. We

focus on persons usually working at home with their workplace location in the associated

NUTS 2 region and their location of residence within the same country.4 However, this

dataset does not capture commuting patterns across regions, which seems particularly

important for Luxembourg, which traditionally experiences a large commuting inflow.

To get a more complete picture of changes in mobility behavior with respect to work,

we consider persons never working from home at a regional level. This category cap-

tures all persons commuting to work irrespective of their location of residence and thus

incorporates commuting inflow from other regions and countries.

Figure 3 shows yearly changes of persons usually working from home for NUTS 2

regions. Figure 3a shows the change from 2019-2020, i.e., the immediate effect of the

pandemic. Blue indicates an increase in working from home, whereas red indicates a

decrease. As expected, almost all regions experienced an increase in people working from

home. The figure zooms in on Luxembourg, which also experienced an increase, but notice

that the change is not particularly strong relative to other regions, i.e., Luxembourg is

not an outlier. In Luxembourg, the change of people usually working from home from

2019-2020 almost doubled at around +98%. Figure 3b shows the change from 2020-2021.

The map now shows a more nuanced picture. Some regions experienced a decrease in

working from home, while some experienced another increase. Luxembourg is among the

latter group and experienced a change of around +28%.

Figure 4 shows yearly changes of persons never working at home for NUTS 2 regions.

Figure 4a shows percentage changes from 2020 to 2021. Overall, the map shows a decrease

4Ideally, we would want to focus on persons working and living in the same NUTS 2 region. However,
this would severely limit the data size and is not available from an EU-LFS data structure.
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Figure 3: Change (%) in persons usually working from home for NUTS2 regions
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Note: Data is from a special extraction from the EU-LFS. Persons usually working from home with
workplace at the NUTS2 region shown in the figure and their location of residence in the associated
country of the region.

in persons never working from home. This is to be expected since the pandemic caused an

increase in working from home in most regions. Figure 4b shows percentage changes from

2020-2021 and shows a mixed picture. Some regions experienced a further decrease in

persons never working from home, while others experienced an increase following the first

year of the pandemic. Luxembourg experienced a decrease in 2019-2020 and 2020-2021 of

−12% and −10%, respectively. Again, Luxembourg does not appear to have experienced

a particularly strong change relative to other countries.

Both changes in working from home within a region depicted in Figure 3 as well

as in never working from home, i.e., commuting inflow, shown in Figure 4 indicate that

Luxembourg did not experience particularly strong changes relative to other regions. This

mitigates the associated threat to identification. It is nonetheless essential to control for

these changes in the empirical analysis. In doing so, we note that the two measures are

likely to share a substantial amount of similar information. If the share of people usually

working from home increases, it seems likely that the number of persons never working

from home decreases. The most significant difference between the measures is that the

latter captures changes in commuting inflow from other regions to Luxembourg. We will
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Figure 4: Change (%) of persons never working from home for NUTS2 regions
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Note: Data is from a special extraction from the EU-LFS. The figure shows yearly changes of persons
never working at home for NUTS2 regions which are the location of the workplace of these persons
irrespective of their location of residence.

therefore analyse the impact of these two measurements in the Section 5.1 separately.

4 Empirical strategy

In this section, we provide a brief outline of the synthetic difference-in-differences (SDID)

methodology. We compare it to standard difference-in-differences (DID) and standard

synthetic control (SC) methods. Then, we go on to explain how covariates are handled in

this approach, which is an important aspect of our analysis. Finally, we discuss inference

and the extension to an event-study type analysis.

4.1 Synthetic difference-in-differences (SDID)

We use the SDID methodology to assess the impact of Luxembourg’s free public transport

policy on CO2 emissions from road transport. The analysis covers a sample period from

2016 to 2021. As the policy is implemented in 2020, the analysis includes four years before

the policy is introduced and two years after, which allows for a comparative analysis of
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the pre-and post-policy effects.

The SDID estimator aims to consistently estimate an average treatment effect on

the treated (ATT) without relying on parallel pre-treatment trends between treated and

every not-treated unit. The ATT is estimated by:

(
τ̂ sdid, µ̂, α̂, β̂

)
= argmin

τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2ω̂sdid

i λ̂sdid
t

}
, (1)

where the outcome of interest, Yit is observed for each unit i at each time t, with i =

1, ..., N and t = 1, ..., T . Wit indicates treatment, with Wit = 1 if unit i is treated at

time t and Wit = 0 else. µ is an intercept, αi and βt are unit and time fixed-effects,

respectively. ω̂sdid
i and λ̂sdid

t are unit and time weights, respectively.

Unit weights are computed to align pre-treatments trends between treated and control

units:

(
ω̂0, ω̂

sdid
)
= argmin

ω0∈R,ω∈Ω

Tpre∑
t=1

(
ω0 +

Nco∑
i=1

ωiYit −
1

Ntr

N∑
i=Nco+1

Yit

)2

+ ζ2Tpre||ω||22, (2)

with Ω = {ω ∈ RN
+ , with

∑Nco

i=1 ωi = 1 and ωi = 1/Ntr ∀ i = Nco+1, ..., N}, where ||ω||2 is

the Euclidian norm and R+ denotes the positive real line. Nco and Ntr are the number of

untreated and treated units, respectively. Similarly, Tpre is the number of pre-treatment

periods. ζ is a regularization parameter to increase dispersion and ensure unique weights,

it is defined in Arkhangelsky et al. (2021). Contrary to traditional synthetic control unit

weights, these SDID weights do not aim to find comparable regions in absolute terms

conditional on covariates, but rather assigns weights to align pre-treatment trends in the

(adjusted) outcome.

Time weights are computed to align pre- and post-treatment periods for untreated

units:

(
λ̂0, λ̂

sdid
)
= argmin

λ0∈R,λ∈Λ

Nco∑
i=1

λ0 +

Tpre∑
t=1

λtYit −
1

Tpost

T∑
t=Tpre+1

Yit

2

+ ζ2Nco||λ||2, (3)

with Λ = {λ ∈ RT
+, with

∑Tpre

t=1 λt = 1 and λt = 1/Tpost ∀ t = Tpre + 1, ..., T}, where the

regularization term ensures unique weights and is very small.

In essence, SDID estimates the ATT, τ̂ sdid, from a weighted two-way fixed-effects
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regression. Compared to SDID, standard difference-in-differences (DID) approaches use

an unweighted two-way fixed-effects regression, thus relying on parrallel pre-treatment

trends in aggregate data. Synthetic control (SC) relaxes this requirement but uses only

unit-specific weights and does not explicitly weigh time periods optimally. Contrary to SC

method, SDID additionally allows for level differences between treatment and synthetic

control units in estimating optimal weights. Following this rationale, Arkhangelsky et al.

(2021) argue that SDID is more flexible compared to DID and SC methods.

4.2 Handling covariates

We then follow the procedure for handling covariates outlined in Arkhangelsky et al.

(2021) and refined in Clarke et al. (2023). In contrast to SC approaches that find optimal

unit weights by balancing observed covariates across treated and control units, SDID

uses a latent factor model and balances unobserved factors to find weights and achieve

consistency. Handling covariates in this setting is treated as a pre-modeling approach, in

which the outcome variable is adjusted by covariates before estimation. The procedure

does not put any stationarity requirements on the covariates, i.e., they can be time-

varying. This adjustment procedure contains two steps. In the first step, we estimate

the coefficients of the covariates. To obtain estimates that are unconfounded by the

treatment itself, we follow Kranz (2022) and exclude the treated unit from estimation.

We run the following model:

Y co
it = αi + γt +Xco

it β + uit, (4)

where the super-script co indicates control units, Y co
it measures CO2 emissions from road

transport, Xco
it collects covariates and may include Covid-related effects (i.e. the Covid

stringency index and Covid cases), the number of commuters, and the share of employed

persons usually working from home, fuel prices, freight transportation, GDP per capita,

and population. To capture differences between regions and time, we can include region-

specific effects, αi, and time-specific effects, γt. In a second step, we adjust the outcome

variable for the aforementioned effects for all units:

Ŷ adj
it = Yit −Xitβ̂. (5)
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Finally, the SDID procedure can then be applied to the adjusted outcome variable.

4.3 Placebo inference and event-study analysis

Arkhangelsky et al. (2021) show that the estimated ATT, τ̂ sdid, is asymptotically nor-

mal. This means that conventional confidence intervals can be used to conduct asymp-

totically valid inference if the asymptotic variance, V̂τ , can be consistently estimated:

τ ∈ τ̂ sdid ± zα/2

√
V̂τ . Arkhangelsky et al. (2021) propose several estimators for the

asymptotic variance (bootstrap, jackknife, placebo). But in cases where there is only

one treated unit (i.e., Ntr = 1), only placebo estimates are well defined. The idea of

this procedure is to replace the exposed unit with unexposed units, then randomly assign

those units to a placebo treatment and compute a placebo ATT. This is repeated many

times to obtain a vector of placebo ATTs. The variance of this vector can then be used

to obtain an estimate for the asymptotic variance.

To evaluate the robustness of the results, we perform an event-study analyses, which

enable us to study the dynamics of the policy effect and allow us to evaluate the credibility

of pre-treatment parallel trends. We follow the discussion in Clarke et al. (2023) on how

to compute these estimates manually. In principle, we want to estimate the differences

in the outcome variable between treated and the non-treated synthetic control region for

each time period t. This allows us to evaluate parallel pre-treatment trends by studying

whether these differences changed over time prior to the policy adoption. Additionally,

we can study the evolution of the treatment over each post-treatment period.

The difference at each time period t is given by:

(Ȳ 1
t − Ȳ 0

t )− (Ȳ 1
base − Ȳ 0

base), (6)

where 1 indicates a treated unit and 0 the non-treated synthetic control unit. The first

term in brackets calculates the difference in mean CO2 emissions at time period t for

treated and control unit. The second term in brackets captures the difference between

the pre-treatment baseline means of these units. The baseline outcomes are weighted

aggregates over pre-treatment periods rather than arbitrarily chosen time periods (as

is usually done in DID applications). Confidence bands around these estimates can

be generated with a placebo-based approach as follows. 1) exclude treated units (i.e.,
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Luxembourg) from the sample, 2) randomly assign treatment to a region, 3) compute

the ATT for this placebo treatment. This procedure can be done many times and we

can then draw from the distribution of the results to create confidence bands around the

quantity estimated by (6) for each time period t.

5 Results and robustness

This section reports our main results as well as several robustness checks. We study

several model specifications, which are outlined in Section 5.1. These include models

without any covariates, with COVID-related covariates, and one with a set of additional

controls. Section 5.2 tests the robustness of the main results. These checks include

specifications that exclude statistically insignificant controls from the main specification

as well as results from standard DID procedures. We find that our results are robust

against these checks.

5.1 Results

We provide results for three different model specifications. The first one does not adjust

emissions for covariates; it is based on Equation (1), where Yit is the log of per capita CO2

emissions from road transport. The second specification adjusts the outcome variable for

COVID-related variables as described in Section 4.2. The auxiliary regression is given

by:

log(CO2/cap)coit =αi + γt + β1asinh(cases)
co
it + β2asinh(nvrwfh)

co
it+ (7)

β3asinh(wfh)
co
it + uit,

where the outcome variable is log of road-transport CO2 emission per capita. It is

regressed on the inverse hyperbolic sine (asinh) of Covid cases, of people usually working

from home (wfh), and of people working in Luxembourg and never working from home

(nvrwfh). We use the inverse hyperbolic sine transformation on covariates that include

zero-values because the natural logarithm of zero is undefined and the transformation

approaches the natural log.5 The third specification is our main specification and adjusts

5The interpretation of the coefficients of the covariates as elasticities in these cases is sensitive to
the size of the untransformed average value of the covariates. As suggested by Bellemare and Wichman
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the outcome variable for additional covariates based on:

log(CO2/cap)coit =αi + γt + β1asinh(cases)
co
it + β2asinh(nvrwfh)

co
it+ (8)

β3asinh(wfh)
co
it + β4log(gdp)

co
it + β5log(ei)

co
it+

β6diesel
co
it + β7petrol

co
it + β8log(frt)

co
it + uit.

The set of covariates that we consider in this specification additionally includes: log of

real gdp per capita and energy intensity, ei, measured as average CO2 emissions of newly

registered vehicles. Real diesel and petrol prices, and log of freight transport measured as

tonnes of goods loaded in Luxembourg. Estimation results for the auxiliary regressions

based on Specifications (8) and (7) are shown in Table B.1 in Appendix B.

We provide results for the ATT for the period that the treatment is in effect, i.e., 2020-

2021, as well as an event-study analysis over the period 2016-2021 in Figure 5 for different

specifications. Results for the ATTs are shown in Figure 5a and the event-study estimates

are shown in Figure 5b. Estimates are based on the following model specifications that

differentiate in the way they adjust the outcome variable. 1) not adjusting for covariates

- no covariates, 2) adjusting only for Covid-related effects - only COVID covariates, and

3) adjusting for the full set of covariates - all covariates. The control units that contribute

to the synthetic control together with their respective weights for the third specification

are graphically shown in Figure C.1 in Appendix C. The regions with the largest weights

come from Belgium, Hungary, Italy, Netherlands, and Poland. Regions from Denmark,

Germany, Finland, and Spain enter the synthetic control with smaller weights.

Table C.1 in Appendix C shows the NUTS 2 regional code and the name of the

region together with the specific unit weights assigned to them. Additionally, the table

gives realizations of pre-treatment control variables for 2019. These values are quite

heterogeneous across controls as well as compared to Luxembourg. This highlights the

difference in SDID compared to SC. While the latter tries to match the treated unit to

a synthetic control in absolute levels, the former assigns weights to align pre-treatment

trends. These trends do not necessitate that the magnitude of controls match well but

rather focus on their trajectories before treatment.

Figure C.2 in Appendix C shows the evolution of pre-treatment trends for Luxembourg

(2020), we multiply these covariates by a constant to generate average values greater than 10, which
provides stable elasticities. The reported coefficients appear to be robust in our specifications.
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(black) as well as different averages over different groups of control regions. These include

the average pre-treatment trend in the adjusted outcome variable over all regions, the

unweighted average over regions that received a positive weight, and the weighted average

across control regions according to the assigned SDiD unit weights. Figure C.2a shows

the absolute level of trends, while Figure C.2b standardizes the trends so that they are

visually more easily comparable.

We can see from these normalized trends that pre-treatment trends for Luxembourg

and the average across all regions shows the biggest visual difference in trends. The

unweighted average across regions that received a positive weight is a much better fit.

The best fit seems to be between Luxembourg and the weighted average according to

the SDID unit weights. This visual inspection affirms the notion that SDID assigns unit

weights to create a synthetic control that more comparable to Luxembourg pre-treatment

compared to a simple average of NUTS 2 regions.

Belgium, Denmark, Germany, Finland, and the Netherlands are among the EU coun-

tries with the highest GDP per capita and thus most comparable to Luxembourg in this

respect. While Poland and Italy have the highest motorization rate after Luxembourg.

It is therefore quite reasonable that the regions contributing to the synthetic control are

taken from these countries.

We noted that while Luxembourg experienced a decrease in commuters in the years

after the pandemic, the magnitude of these changes was not particularly strong relative to

other EU regions. This observation extends to the regions of the synthetic control. Most

of these experienced a decrease in the year immediately following the pandemic. Changes

in commuting from 2020-2021, however, are more diverse. Some regions experienced a

further drop in commuters (as did Luxembourg), while others saw an increase. Only

regions in the Netherlands saw a further strong decrease. The other regions show a

mixed picture with overall small changes in magnitude.

Overall, the regions constituting the synthetic control show a very similar pattern

in commuting changes from 2019-2020. From 2020-2021, most regions experienced only

small adjustments in commuting. We believe that this strengthens the credibility of our

results because Luxembourg did not experience a strong drop in commuters relative to

the synthetic control regions.

The estimated ATTs for the specification including all covariates indicate an effect at
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Figure 5: ATTs and event study estimates of the estimated impact of free public
transport on road emissions (CO2) per capita in Luxembourg for different model
specifications with 95% confidence bands based on placebo estimates
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around −0.69, i.e., a 6.9% reduction in transport CO2 emissions as a response to the free-

public transport policy implemented in March 2020. This is less in magnitude compared

to controlling only for Covid cases, which yields an estimated ATT of around −11.8%.

The specification with no covariates provides the lowest estimated ATT at almost −15%.

All estimates are statistically significant at the 5% significance level. The event-study

analysis shows no violation of parallel pre-treatment trends for all specifications. Post-

treatment effects show statistical significance in 2020 for all three specifications. In 2021,

the confidence intervals based on the specifications that adjust the outcome variable

slightly cross the dashed zero-line at the 5-% significance level.

5.2 Robustness tests

We have so far studied the three specifications shown in Figure 5, where the main spec-

ification is the one including all covariates. We now want to examine the sensitivity of

our main results to alternative model specifications. It may be reasonable to assume

that people working from home and people commuting to work capture in part similar

dynamics (the correlation is around 0.6). We want to test the sensitivity of our results

by either dropping one or the other from our specifications. Additionally, from Table

B.1, we can see that the coefficient for log(frt) (log of freight transport) is statistically

insignificant.

We estimate the following specifications, all of which exclude some combination of

these coefficients from the adjustment of the outcome variable. Specifically, we estimate:

a model excluding controls for freight transport (Spec 1), a model omitting controls for

working from home (Spec 2), and a model that excludes both of these covariates (Spec 3),

one that excludes the commuting variable, nvrwfh (Spec 4), and one that excludes both

the commuting and freight controls (Spec 5). The results of the sensitivity analyses are

displayed in Figure D.1 and Table D.1 in Appendix D. All five alternative specifications

show similar estimates to our main specification including all covariates. The estimated

ATTs are all just slightly below our main specification, which yields an estimate of around

−6.9%.

It is particularly encouraging to observe that the estimates derived from these 5

different model specifications are comparable in magnitude both to our main results and

to each other. This consistency underlines the robustness of our findings and confirms
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their reliability in the inclusion and exclusion of various controls. To further establish the

robustness of our results, we compare the three specifications from Figure 5 to standard

DID techniques, thus testing the robustness of our results to different model assumptions.

The results are displayed in Figure E.1 in Appendix E. The magnitudes of the estimates

are slightly larger for all three specifications in comparison to our main results.How the

results of the DID analysis are still consistent with our primary results and provide

additional validation of our main findings.

6 Discussion

In this section, we discuss the impact of Luxembourg’s free public transport policy, im-

plemented in 2020, on CO2 emissions from road transport, with an estimated ATT of

around −6.9%. We attribute this reduction mainly to a modal shift from private mo-

torised transport to public transport. We now want to discuss whether our estimated

effect size is reasonable. This can be done from two perspectives. One is by looking

at changes in car traffic, and the other is by looking at increases in the use of public

transport.

We begin by examining traffic count data from Luxembourg’s open data portal (Gou-

vernement du Grand-Duché de Luxembourg, 2023). The data, compiled by the Ad-

ministration des Ponts et Chaussées (Luxembourg Bridges and Roads Administration),

includes daily traffic counts. We aggregate the number of bi-directional car counts at

each traffic post, for each month, over the period 2018 to 2022 by canton. We only in-

clude traffic posts that have no missing data for each month and each year during this

period. Figure F.1 in Appendix F illustrates where these traffic posts are located in

Luxembourg along with the public transport networks. The traffic posts circled have

all experienced a decrease in annual bi-directional car traffic volume compared to 2019.

These traffic posts are largely situated close to Luxembourg city and public transport

networks. The traffic posts with bolded circles represent the 10 posts with the largest

decrease in bi-directional car traffic volume compared to 2019. Figure F.2 in Appendix F

shows the annual bi-directional traffic volume for the years 2018 to 2021, for these top

ten traffic posts. Examining the total annual traffic volume, we observe a slight upward

trend in traffic counts up to the year 2019. As expected, there is a decline in 2020 across
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these posts, coinciding with the COVID-19 pandemic. However, the traffic counts for the

years 2021 are lower than the pre-pandemic levels of 2019.

The total bi-directional car traffic volume across all the traffic posts plotted in Fig-

ure F.1 increased by 7% in 2019 relative to 2018. Assuming that the free transit inter-

vention induced a modal shift from private motorized vehicles to public transport, the

car traffic volume should stagnate from 2020 onwards. In fact, the change in car traffic

between 2019 and 2021 was −0.4%, basically stagnating. Of course, we have to take into

account the COVID-19 pandemic. In 2020 we see a drop of about 10%. In 2021, however,

we see an increase of about 11%. These figures indicate that the COVID-19 effect seems

to have had a temporary effect in 2020, but that it did not structurally change the volume

of traffic.

To further examine the compatibility of our estimates with observational data, we

now study changes in public transport usage. Consider the following back-of-the-envelop

calculations. We estimate a reduction in CO2 emissions from road transport of 6.9%.

Following Bigi et al. (2023), let us assume a modal split for private vehicles and public

transport of around 80 and 15 percent, respectively. Further, assume that the emission

reduction is due to a modal change from private vehicles to public transport. This then

gives an estimated increase of public transport usage of around 36%.

To assess the credibility of this effect, we utilize public transport usage data for

Luxembourg. Specifically, we turn to data on the average daily number of people using

trams on weekdays from OECD (2023). In February 2020, this average tram usage was

at around 31,000 persons. This increased to around 36,000 in February 2021 and to

around 53,000 in February 2022. This amounts to an increase of around 16% and 47%

from 2020-2021 and 2021-2022, respectively. These numbers are well in line with our

estimates, suggesting that they are reasonable. Additionally, we can relate these results

to the LUXmobile survey, carried out by the Luxembourg City Council (Luxmobile,

2020). This survey suggests that the free public transport policy has led to an increase in

public transport usage of around 30% in 2022, further adding credibility to our estimate.

While the descriptive analysis does not validate the causal estimates directly, it does

provide figures that are consistent with the estimated impact of the free transit policy

observed in this thought experiment
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7 Conclusion

We estimate the ATT of the free public transport policy introduced in Luxembourg

in 2020 to be around −0.069, controlling for all covariates. This implies a reduction

in CO2 emissions from road transport of around 6.9%. The results show considerable

stability across a range of model specifications that take into account factors related to

the COVID-19 pandemic, fuel prices, the prevalence of remote working, and commuting

patterns. Furthermore, our results are consistent with the descriptive evidence from traffic

volume data and the evidence from the LUXmobile survey, which indicates an increase

in public transport use as a result of the free public transport policy (Luxmobile, 2020).

The consistency of our results leads us to conclude that this is a statistically significant

causal effect, indicating a behavioral shift from private car use to public transport.

Our findings have a high policy relevance. The reduction in CO2 emissions from road

transport resulting from Luxembourg’s free public transport policy provides compelling

evidence of the effectiveness of such policies in contributing to climate change mitigation

efforts. This insight is particularly relevant for policymakers in urbanized, affluent areas

with well-developed public transport systems, similar to Luxembourg. As countries strive

to meet increasingly ambitious climate targets, the integration of free public transport

policies with other sustainable transport and urban planning initiatives could offer a

holistic solution to reducing CO2 emissions and fostering a sustainable future.
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Appendix A

Table A.1: Data description

Variable
(variable name)

Description Measurement Sources

CO2 emissions
log(co2)

CO2 emission from road
transport sector. IPCC-1996
sector category 1.A.3.b

log of CO2 per capita EDGARv8

GDP
log(gdp)

Regional GDP by NUTS 2
regions

log of million purchasing
power standard per inhab-
itant

Eurostat regional
statistics

covid cases
asinh(cases)

Daily number of new covid
19 cases aggregated to the
annual level, for each NUTS2
region

inverse hyperbolic sine of
number of cases

European region
tracker

commuters
asinh(nvrwfh)

Number of persons who never
worked from home in the
reference period of four weeks
preceding the end of the
reference week for all NUTS 2
region, which are the location
of the workplace irrespective
of the location of residence

inverse hyperbolic sine of
number of commuters

EU Labour Force
Survey

work from home
asinh(wfh)

The number of persons who
usually worked from home
in the reference period of
four weeks preceding the end
of the reference week. For
NUTS 2 regions which are the
location of the workplace with
the location of residence in
the same country

inverse hyperbolic sine of
the number of workers

EU Labour Force
Survey

emissions intensity
log(ei)

Avg CO2 emissions for new
passenger cars

log of CO2/km Eurostat

diesel price
diesel

Avg annual price of diesel
adjusted for inflation

Euros per liter Eurostat weekly oil
bulletin

petrol price
petrol

Avg annual price of petrol
adjusted for inflation

Euros per liter Eurostat weekly oil
bulletin

freight
log(frt)

Total good loaded in the
NUTS 2 region

log of million tonne per
km

Eurostat regional
statistic
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Appendix B

Table B.1: TWFE regression for specification projected with all covariates and only
adjusted for COVID-related controls

(1) (2)

asinh(cases) -0.0265∗∗∗ -0.0112

(0.00540) (0.00765)

asinh(nvrwfh) 0.0884∗∗∗ 0.147∗∗

(0.0309) (0.0609)

asinh(wfh) -0.0189∗∗ -0.0593∗∗∗

(0.00724) (0.0112)

log(gdp) 0.526∗∗∗

(0.0831)

log(ei) 0.287∗∗∗

(0.0492)

diesel -0.791∗∗∗

(0.0967)

petrol 0.433∗∗∗

(0.130)

log(frt) 0.00701

(0.0122)

Obs 792 792

N 132 132

T 6 6

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Dependent variable is log of CO2 per captia, log(co2), standard errors are in parantheses and clustered at the

regional level. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10
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Appendix C

Figure C.1: Unit weights - all covariates
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Table C.1: Summary values of selected variables in 2019 of NUTS 2 regions that
received positive weights

NUTS2 Name Weights CO2pc GDPpc EI NvrWFH WFH Diesel Petrol

LU00 Luxembourg - 8.287867 78700 133 348.675 33.899 1.0387 1.1432

ITG1 Sicilia .0460852 1.324144 18400 119.4 1284.265 31.611 1.4324 1.5237

ITF6 Calabria .0446712 1.568642 17700 119.4 512.706 14.867 1.4324 1.5237

ITC3 Liguria .038334 1.164884 32900 119.4 582.16 28.682 1.4324 1.5237

HU31 Észak-Magyarország .0369661 1.662413 15100 129.7 426.951 4.25 1.1198 1.0703

ITF1 Abruzzo .0342636 2.498864 25700 119.4 466.533 19.18 1.4324 1.5237

ITI4 Lazio .0315534 1.0559 35200 119.4 2285.137 102.913 1.4324 1.5237

BE35 Prov. Namur .0305506 3.872224 24500 121.5 125.367 14.525 1.3334 1.2908

BE32 Prov. Hainaut .0294199 2.387068 22800 121.5 322.539 37.43 1.3334 1.2908

ITC1 Piemonte .0289401 1.957292 32000 119.4 1707.208 75.301 1.4324 1.5237

BE10 Rég. de Bruxelles-Capitale .0288217 .4279352 63400 121.5 483.185 31.066 1.3334 1.2908

ITF3 Campania .0274606 .7965805 19500 119.4 1519.748 42.197 1.4324 1.5237

PL62 Warmińsko-mazurskie .0266593 2.164641 15600 130.4 477.188 33.594 1.1201 1.1095

BE22 Prov. Limburg (BE) .0261186 2.470908 29700 121.5 248.926 21.71 1.3334 1.2908

NL11 Groningen .0257157 1.429476 36000 98.4 185.302 38.054 1.2825 1.5581

BE25 Prov. West-Vlaanderen .0254914 2.015859 35700 121.5 375.179 50.194 1.3334 1.2908

HU32 Észak-Alföld .0249882 1.409951 14700 129.7 593.312 4.625 1.1198 1.0703

HU22 Nyugat-Dunántúl .0245595 1.920265 22200 129.7 438.736 4.246 1.1198 1.0703

ITI3 Marche .0240278 1.749979 28400 119.4 597.778 19.142 1.4324 1.5237

PL51 Dolnoślaskie .0234284 1.559153 24900 130.4 1015.523 63.135 1.1201 1.1095

Continued on next page
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Table C.1 continued from previous page

NUTS2 Name Weights CO2pc GDPpc EI Commute WFH Diesel Petrol

ITG2 Sardegna .0233507 2.561578 22000 119.4 561.487 16.294 1.4324 1.5237

ITF4 Puglia .0233227 1.051745 19600 119.4 1167.695 25.646 1.4324 1.5237

PL22 Ślaskie .0229276 1.084913 23400 130.4 1622.908 91.718 1.1201 1.1095

ITF5 Basilicata .0212645 2.996321 23300 119.4 188.589 4.191 1.4324 1.5237

ITF2 Molise .0207205 3.354921 21900 119.4 101.967 2.375 1.4324 1.5237

ITI2 Umbria .0195545 1.920073 26600 119.4 336.737 12.897 1.4324 1.5237

ITH5 Emilia-Romagna .0192799 1.906196 36600 119.4 1950.986 84.006 1.4324 1.5237

BE23 Prov. Oost-Vlaanderen .0191552 1.888781 33500 121.5 478.839 48.609 1.3334 1.2908

ITH3 Veneto .0191355 1.750784 34200 119.4 2043.725 88.04 1.4324 1.5237

BE21 Prov. Antwerpen .0176584 1.479478 43400 121.5 573.013 54.575 1.3334 1.2908

ES12 Principado de Asturias .0172325 2.084811 25000 121.3 337.108 25.691 1.1645 1.2443

PL42 Zachodniopomorskie .0169248 1.733621 19000 130.4 600.91 31.089 1.1201 1.1095

ITC2 Valle d’Aosta/Vallée d’Aoste .0164573 4.806325 39000 119.4 57.961 1.897 1.4324 1.5237

HU23 Dél-Dunántúl .0155055 2.265898 15500 129.7 338.673 3.979 1.1198 1.0703

ITH4 Friuli-Venezia Giulia .0153587 2.473126 32700 119.4 481.826 24.463 1.4324 1.5237

ITI1 Toscana .0153478 1.677962 33100 119.4 1521.733 67.87 1.4324 1.5237

PL61 Kujawsko-pomorskie .0140143 1.761975 18200 130.4 713.429 33.875 1.1201 1.1095

DK05 Nordjylland .0127028 2.361858 32900 111.9 199.535 21.74 1.3608 1.5686

PL43 Lubuskie .0110128 2.407628 18500 130.4 372.141 9.518 1.1201 1.1095

HU21 Közép-Dunántúl .0109734 1.923086 21100 129.7 453.529 3.476 1.1198 1.0703

BE24 Prov. Vlaams-Brabant .0096522 2.068579 39900 121.5 323.363 30.611 1.3334 1.2908

NL42 Limburg (NL) .008625 1.881989 35000 98.4 384.305 68.802 1.2825 1.5581

DE40 Brandenburg .0085718 3.522108 27400 131.2 373.286 57.475 1.1892 1.3425

PL41 Wielkopolskie .0082682 1.616404 24800 130.4 1347.876 87.625 1.1201 1.1095

NL13 Drenthe .0053832 3.091486 27000 98.4 163.221 32.616 1.2825 1.5581

ES43 Extremadura .0045429 3.320498 20700 121.3 353.452 19.641 1.1645 1.2443

HU33 Dél-Alföld .0040102 1.601193 16500 129.7 534.09 3.244 1.1198 1.0703

NL33 Zuid-Holland .0037091 1.151502 38400 98.4 1111.512 247.642 1.2825 1.5581

PL21 Ma lopolskie .0028314 1.235496 20800 130.4 1165.436 66.144 1.1201 1.1095

NL34 Zeeland .0025722 1.630755 31500 98.4 123.797 30.612 1.2825 1.5581

ES11 Galicia .0025317 2.153037 25600 121.3 975.87 59.897 1.1645 1.2443

ES41 Castilla y León .0019238 4.726597 26800 121.3 888.02 47.452 1.1645 1.2443

PL63 Pomorskie .0016685 1.347721 22200 130.4 811.075 75.224 1.1201 1.1095

ES62 Región de Murcia .001362 1.794109 23300 121.3 549.355 25.372 1.1645 1.2443

NL41 Noord-Brabant .0012802 1.829372 40200 98.4 869.949 184.977 1.2825 1.5581

NL23 Flevoland .0012364 2.423461 29300 98.4 113.304 24.363 1.2825 1.5581

NL22 Gelderland .0007398 2.004177 33500 98.4 656.286 173.673 1.2825 1.5581

DK03 Syddanmark .0007304 2.122641 35300 111.9 412.184 46.22 1.3608 1.5686

ITH2 Prov. Autonoma di Trento .0003959 2.652894 39600 119.4 225.226 8.632 1.4324 1.5237

FI1D Pohjois- ja Itä-Suomi .0000101 3.307658 28300 115.3 411.308 58.802 1.3593 1.4714

Note: Weights refer to unit weights assigned by the SDID method. CO2 pc is CO2 emissions measured in tonnes per

capita. GDP pc is GDP per capita in Purchasing Power Standards. EI is the average CO2 emissions per km from new

passenger cars. Commute refers to all persons commuting to the NUT2 region. WFH is the proportion of people working

from home. Diesel is the annual average real price of diesel. Petrol is the annual average real price of petrol. All values

(except weights) are for 2019.
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Figure C.2: Pre-treatment trends of the adjusted log CO2 per capita emissions

(a) Absolute level
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Notes: Luxembourg is the pre-treatment time series trend for Luxembourg treated unit. Simple avg all
units is the pre-treatment average trend of all units in the donor pool. Simple avg positively weighted
units is the pre- treatment average trend of the units in the donor pool that received positive weights.
Weighted average is the pre-treatment weighted average of the units that received a positive weights.
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Appendix D

Figure D.1: ATTs across different model specifications
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Notes: Spec 1 excludes controls for freight transport; Spec 2 excludes controls for working from home;

Spec 3 excludes controls for both freight and working from home, Spec 4 excludes controls for commuting

(never working from home); Spec 5 excludes controls for both freight and commuting.
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Table D.1: Sensitivity analysis across different model specifications

(1) (2) (3) (4) (5)

asinh(cases) -0.0264∗∗∗ -0.0245∗∗∗ -0.0243∗∗∗ -0.0289∗∗∗ -0.0287∗∗∗

(0.00544) (0.00519) (0.00521) (0.00579) (0.00582)

asinh(nvrwfh) 0.0887∗∗∗ 0.118∗∗∗ 0.119∗∗∗

(0.0310) (0.0349) (0.0351)

asinh(wfh) -0.0191∗∗∗ -0.0267∗∗∗ -0.0269∗∗∗

(0.00722) (0.00615) (0.00612)

log(gdp) 0.526∗∗∗ 0.562∗∗∗ 0.562∗∗∗ 0.511∗∗∗ 0.511∗∗∗

(0.0830) (0.0866) (0.0864) (0.0861) (0.0860)

log(ei) 0.288∗∗∗ 0.289∗∗∗ 0.290∗∗∗ 0.301∗∗∗ 0.303∗∗∗

(0.0490) (0.0488) (0.0486) (0.0501) (0.0499)

diesel -0.796∗∗∗ -0.820∗∗∗ -0.826∗∗∗ -0.817∗∗∗ -0.822∗∗∗

(0.0932) (0.0985) (0.0949) (0.0938) (0.0908)

petrol 0.437∗∗∗ 0.434∗∗∗ 0.440∗∗∗ 0.446∗∗∗ 0.451∗∗∗

(0.127) (0.131) (0.128) (0.127) (0.124)

log(frt) 0.00873 0.00814

(0.0122) (0.0118)

Obs 792 792 792 792 792

N 132 132 132 132 132

T 6 6 6 6 6

Standard errors in parentheses. Dependent variable is log(co2cap).

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix E

Figure E.1: ATTs using DID approach
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Notes: The estimates are based on the following model specifications, which differ in the way they adjust

for the outcome variables: 1) not adjusting for covariates - no covariates, 2) adjusting only for Covid-

related effects - only COVID covariates, and 3) adjusting for the full set of covariates - all covariates.

These three specifications correspond to the three specifications used in the SDID analysis.
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Appendix F

Figure F.1: Luxembourg public transport network and traffic camera posts
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 11−WORMELDANGE Frontière  1111−ECHTERNACH  1113−CHRISTNACH  1114−PAFEBIERG  1117−ECHTERNACH  12−SCHENGEN Frontière
 1202−JUNGLINSTER  1204−GONDERANGE  1230−NIEDERANVEN  1231−WECKERGRUND  1250−MOERSDORF  1314−DALHEIM
 1441−AESSEN  1448−TUNNEL MARKUSBIERG  15−DUDELANGE Frontière  2−WEMPERHARDT Frontière  20−STEINFORT Frontière  21−CAP
 24−RODANGE  30−FRISANGE Frontière  390−SIEWEBUREN  400−BONNEVOIE  401−HEISDORF  403−DOMMELDANGE
 407−HELFENT  414−KEHLEN  415−BIERGERKRAIZ  416−BRIDEL  417−KEISPELT  419−KOPSTAL
 420−BERTRANGE  425−MUNSBACH  452−FRIDHAFF  469−WINDHOF  473−BOUS  479−TRINTANGE
 485−DUDELANGE−KAYL  487−ESCH−SUR−ALZETTE  488−RUMELANGE  492−BLUMENTHAL  495−RECKANGE  520−ROLLINGEN
 525−ANGELSBERG  604−TROISVIERGES  610−DICKT  708−MERTZIG  710−ETTELBRUCK CONT.  711−SCHIEREN
 716−ETTELBRUCK  724−MEDERNACH−LAROCHETTE  807−REICHLANGE  809−REICHLANGE  811−RIPPWEILER  816−RIPPWEILER
 822−GROSBOUS  902−CLERVAUX  908−BETTEMBOURG  926−ESCH−ALZETTE  927−WICKRANGE  939−HOSINGEN
 942−HAMIVILLE  943−MAISON SCHUMAN

 

Notes: The black dots indicate the location of the traffic posts. The circled dots indicate traffic posts

that recorded a decrease in bi-directional car traffic volumes in 2021 relative to 2019. The light grey

lines are the regional (RGTR) bus networks. The pink lines are the National rail network. The red line

is the tram line. The public transport networks mapped are the networks as of 2018 (the latest available

data). The traffic posts data and the geospatital data for the public transport data are obtained from

Luxembourg’s open data portal (Gouvernement du Grand-Duché de Luxembourg, 2023, 2024).
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Figure F.2: Volume of bi-directional car traffic

Notes: The figure illustrates the bi-directional car traffic volume of the 10 posts that recorded the largest

decrease in car traffic in 2021 relative to 2019. Refer F.1 above for the corresponding location of the

traffic posts.
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